Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security

Zufiria Zatarain, Pedro Jose and Pastor Escuredo, David and Úbeda Medina, Luis Antonio and Hernandez Medina, Miguel Angel and Barriales Valbuena, Iker and Morales Guzmán, Alfredo and Jacques, Damien C. and Nkwambi, Wilfred and Diop, M. Bamba and Quinn, John and Hidalgo Sánchez, Paula and Luengo Oroz, Miguel Ángel (2018). Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security. "Plos One", v. 13 (n. 4); pp. 1-20. ISSN 1932-6203. https://doi.org/10.1371/journal.pone.0195714.

Description

Title: Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security
Author/s:
  • Zufiria Zatarain, Pedro Jose
  • Pastor Escuredo, David
  • Úbeda Medina, Luis Antonio
  • Hernandez Medina, Miguel Angel
  • Barriales Valbuena, Iker
  • Morales Guzmán, Alfredo
  • Jacques, Damien C.
  • Nkwambi, Wilfred
  • Diop, M. Bamba
  • Quinn, John
  • Hidalgo Sánchez, Paula
  • Luengo Oroz, Miguel Ángel
Item Type: Article
Título de Revista/Publicación: Plos One
Date: April 2018
ISSN: 1932-6203
Volume: 13
Subjects:
Faculty: E.T.S.I. Telecomunicación (UPM)
Department: Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

We propose a framework for the systematic analysis of mobile phone data to identify relevant mobility profiles in a population. The proposed framework allows finding distinct human mobility profiles based on the digital trace of mobile phone users characterized by a Matrix of Individual Trajectories (IT-Matrix). This matrix gathers a consistent and regularized description of individual trajectories that enables multi-scale representations along time and space, which can be used to extract aggregated indicators such as a dynamic multi-scale population count. Unsupervised clustering of individual trajectories generates mobility profiles (clusters of similar individual trajectories) which characterize relevant group behaviors preserving optimal aggregation levels for detailed and privacy-secured mobility characterization. The application of the proposed framework is illustrated by analyzing fully anonymized data on human mobility from mobile phones in Senegal at the arrondissement level over a calendar year. The analysis of monthly mobility patterns at the livelihood zone resolution resulted in the discovery and characterization of seasonal mobility profiles related with economic activities, agricultural calendars and rainfalls. The use of these mobility profiles could support the timely identification of mobility changes in vulnerable populations in response to external shocks (such as natural disasters, civil conflicts or sudden increases of food prices) to monitor food security.

Funding Projects

TypeCodeAcronymLeaderTitle
Government of SpainMTM2010-15102UnspecifiedUnspecifiedSistemas algebraico-diferenciales: análisis, diagnóstico de fallos y aplicaciones en ingeniería eléctrica y electrónica
Government of SpainMTM2015-67396-PUnspecifiedUnspecifiedRedes complejas: modelado, dinámica y aplicaciones

More information

Item ID: 54997
DC Identifier: http://oa.upm.es/54997/
OAI Identifier: oai:oa.upm.es:54997
DOI: 10.1371/journal.pone.0195714
Official URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195714
Deposited by: Memoria Investigacion
Deposited on: 27 May 2019 16:02
Last Modified: 27 May 2019 16:02
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM