Abstract- The combination of non-linear control and linear control proposed in [1] has a very fast transient response (voltage step from 1 V to 1.5 V in 2 μs). In order to achieve this fast transient response the non-linear scheme is based on measuring the current of the output capacitor of a Buck converter. The design of this current sensor is complex due to parasitic effects such as component tolerances (bandwidth and dc gain of the Op-Amp), aging, temperature variation, etc. A design methodology for this current sensor is proposed regarding all these effects. The sensing circuit is designed to mirror the actual capacitor current with a trans-impedance amplifier by matching phase and scaling impedances of the RLC network (C, ESR and ESL of the output capacitor). The proposed methodology has been validated by means of a buck converter switching at 5 MHz. Experimental results validate that the current sensor behaves appropriately under voltage and load steps.

I. INTRODUCCION

Nowadays the Voltage Regulator Modules (VRM) used in microprocessors and portable applications require high efficiency and fast transient response [2-3]. Fast dynamic control techniques can reduce the required output capacitor in this kind of applications, reducing the cost and the size of the solution. Different techniques have been presented in the literature to get fast transient response [1], [4-24]. The combination of non-linear and linear control presented in [1] achieves very fast transient response (voltage step from 1 V to 1.5 V in 2 μs). Figure 1 shows the non linear and linear control scheme proposed in [1], it is based on a hysteretic control of the C out current. When a load step occurs: the non linear control leads the converter close to the new steady state and the linear control provides the accurate regulation. In the literature many current sensors design can be found, most of them measure the current in the inductor or in the power MOSFET. (In [25], an overview of current sensing techniques is presented). The dynamic performance of this control technique is very good although to measure the output capacitor current is very complex. The use of a series resistance is not viable since the output impedance is deteriorated, worsening the dynamic response of the converter. The use of a current transformer is less invasive although output impedance is still affected. The main disadvantages are the size, cost and integrating capability. Therefore, non-invasive technique must be used to avoid the increment of the C out impedance, reduce size and keep integrating capability. The design of the non-invasive current sensor is difficult since it is very sensitive to parasitic effects.

This paper is organized as follows, section II explains the operating principle and design considerations, section III describes the proposed design methodology and design example. Section IV shows the experimental validation.

II. OPERATING PRINCIPLE AND DESIGN CONSIDERATIONS

The RLC network is a non-invasive method to measure the current of the output capacitor (C out). The basic idea is to use an RLC network in parallel with the C out (Figure 2) to measure the current by matching phases, time constants and impedance scaling. The current in the parallel network of the output capacitor is proportional to the C out Current (Figure 3).

III. DESIGN METHODOLOGY

The design of the current sensor is very complex due to parasitic effects such as component tolerances (bandwidth and dc gain of the Op-Amp), aging, temperature variation, etc. A design methodology for this current sensor is proposed regarding all these effects. The sensing circuit is designed to mirror the actual capacitor current with a trans-impedance amplifier by matching phase and scaling impedances of the RLC network (C, ESR and ESL of the output capacitor). The proposed methodology has been validated by means of a buck converter switching at 5 MHz. Experimental results validate that the current sensor behaves appropriately under voltage and load steps.
The proper operation of this sensor strongly depends on the relative position of the converter switching frequency (f_{sw}) and the C_{out} resonant frequency (f_{res}). If $f_{sw} > f_{res}$ the impedance is capacitive (Figure 4). When $f_{sw} < f_{res}$ the impedance is inductive. If the sensor is designed for the inductive side, f_{res} must be always lower than f_{sw} to guarantee the appropriate operation.

If the C_{out} impedance behavior is different than expected (capacitive instead of inductive) due to the tolerance effects, the phase of the current changes drastically producing incorrect current. As a result of this C reduction: the real and measured currents are no longer in phase.

The capacitance value is the output capacitor parameter most sensitive to tolerance effects like aging and dielectric material tolerances. The dielectric material affects the capacitance value in multilayer ceramic chip (MLCC) capacitor. For example, using X7R dielectric material tolerance is ±10%, X5R changes ±20% and Y5V changes +80% and -20% of the capacitance value.

Table 1 shows the influence of aging in ceramic capacitor. Temperature variation also affects the capacitance value (±15%). These capacitance tolerances affect the resonant frequency. For example, for X7R dielectric material, Kyocera capacitor presents a -26% reduction in capacitance value due to aging and temperature effects. This variation decreases the resonant frequency 1.15 times higher (from 1.59 MHz to 1.8 MHz). And, Murata capacitor presents a -33% reduction in capacitance value due to aging and temperature effects. This variation increases the resonant frequency 1.2 times higher (from 1.59 MHz to 1.9 MHz). Therefore, it is necessary to assure by design that system always operates in the same side.

Table 1. Ceramic capacitor aging from different manufacturers.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Dielectric</th>
<th>Variation after 10000 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murata</td>
<td>X7R, Z5U, COG</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>Y5V</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>X7R</td>
<td>0%</td>
</tr>
<tr>
<td>Kyocera</td>
<td>X7R</td>
<td>2%</td>
</tr>
<tr>
<td></td>
<td>Y5V</td>
<td>10%</td>
</tr>
<tr>
<td>Vishay</td>
<td>X7R</td>
<td>2.5%</td>
</tr>
<tr>
<td>TDK</td>
<td>X7R, Y5V, CGH,X0H</td>
<td>5%</td>
</tr>
<tr>
<td>AVX</td>
<td>X7R</td>
<td>6%</td>
</tr>
<tr>
<td>RFE</td>
<td>X7R</td>
<td>5%</td>
</tr>
</tbody>
</table>

B. Design of parallel RLC network

The RLC network in parallel with output capacitor (to measure the current) is designed with the same time constants, equal phases and scaled impedance magnitude. The current through the parallel RLC network (I_S) is proportional to the output capacitor current (I_{Cout}) divided by the impedance scaling magnitude (n). Equations (1), (2) and (3) should be accomplished in order to design an appropriate RLC network. Equation (1) shows the impedance scaling between the C_{out} and the parallel RLC network by n factor; equation (2) and (3) show the same time constants between the actual and mirror current.

\[n \frac{|Z_{C_{out}}|}{|Z_S|} = \frac{ESR \cdot C_{out}}{Req \cdot Cs} \]
\[ESR \cdot C_{out} = Req \cdot Cs \]
\[ESL \cdot C_{out} = Ls \cdot Cs \]

C. Trans-Impedance amplifier

The actual implementation of the RLC network is based on a trans-impedance amplifier (Figure 6). The Op-Amp frequency behavior is assumed as a dc gain (A_{dc}) with a pole at wp, being ΔB the Op-Amp bandwidth (Figure 6). The gain of the sensor (K_c) is approximately given by equation (4).

\[K_c = -\frac{R1}{n} \frac{\Delta V_s}{\Delta I_{C_{out}}} \]
The input impedance of the trans-impedance amplifier behaves as a resistive (Ri) and inductive (Li) series network (Figure 7). This inductive (see equation 5) behavior is required to match the ESL effect of the output capacitor (Assuming that $f_{rv} < \Delta B/10$). The input resistance (Ri) behavior (see equation 6) of the trans-impedance amplifier is required to match Rs with the Req of the RLC network. The relationship between the Req, Ri and Rs is given by equation (7).

\[
L_i = \frac{R_i}{A_{dc}} \\
R_i = \frac{R_1}{A_{dc}} \\
R_s = R_{eq} - R_i
\]

\[
\Delta B = \frac{1}{f_p} = \frac{1}{2\pi (R_1 + R_s) C_s s + 1} \\
\text{where, } f_p \text{ is the pole and } f_z \text{ is the zero of the } 1/\beta \text{ transfer function. The } f_z \text{ and } f_p \text{ do not depend of the } \beta \text{ value.}
\]

D. Practical design considerations: Internal stability analysis

The design of this current sensor is sensitive to tolerances of bandwidth and dc gain of the Op-Amp. Figure 8 shows the range of ΔB and A_{dc} variation for a specific Op-Amp (AD8061). For example, -15% ΔB tolerance of the Op-Amp generates -15% f_{rv} variations. The temperature also modifies the bandwidth of the Op-Amp. For example, decrement of temperature (from 25 °C to -55 °C) results on approximately +6.4% of ΔB increment. An increment of temperature (from 25 °C to 125 °C) results on approximately -1.6% of ΔB decrement. Figure 9 shows for a specific Op-Amp (LM6171) how the temperature affects the value of the ΔB.

![Figure 8. Frequency response of Op-Amp: AD8061. Maximum and minimum bandwidth and A_{dc} according to data sheet.](image)

![Figure 9. Tolerance of the Op-Amp bandwidth. LM6171.](image)

![Figure 10. Op-Amp: Internal stability analysis.](image)
III. PROPOSED DESIGN METHODOLOGY AND DESIGN EXAMPLE

The design methodology for the current sensor is presented in this section, being applied in a design example. The objective of the design methodology is to obtain the value of K_c, to select the appropriate operational amplifier (Op-Amp), and to determine the R_s and C_s parameters. Also the impedance scaling magnitude (n) will be obtained although it is an intermediate step.

The input specifications for the design example are: V_{in} = 3 V, V_{sat} = 1 V, C_{out} = 4 µF (4.1 µF), ESR = 4.5 mΩ, ESL = 450 pH and f_{sw} = 5 MHz. The proposed design methodology is based on the following steps:

1.- Determine the range for the sensor gain (K_c): The value for the parameter K_c must be found within a range defined by $K_{c,min}$ and $K_{c,max}$. These limits of K_c are chosen in order to ensure that the gain of the trans-impedance amplifier is approximately the ideal gain (-R_1). This limit gives a minimum value for the sensor gain ($K_{c,min}$). And the maximum value of K_c ($K_{c,max}$) should be selected in order to ensure the small signal behavior of the Op-Amp (small signal bandwidth), this is, the output voltage ripple (ΔV_{sat} = K_c·$I_{c(out)}$) must be low enough to ensure the small signal frequency response of the Op-Amp. It is important to highlight that the value of the parameter K_c depends on the selected Op-Amp. The higher the Op-Amp bandwidth, the higher the sensor gain. The range of K_c for this example is 0.14 V/A < K_c < 2 V/A.

2.- Determine the appropriate Op-Amp: The selection of the Op-Amp should accomplish the limits of the ΔB and K_c in order to maintain the sensor working in the same side. The characteristics of the selected Op-Amp should accomplish: the minimum value of the bandwidth (ΔB_{min}) that guarantee the internal stability and the ideal gain of the Op-Amp ($V_s/I_s = -R_1$). The maximum value of the bandwidth (ΔB_{max}) should accomplish that the resonant frequency of the sensor (f_{res_sensor}) should be less than the switching frequency (f_{sw}), keeping the sensor operation in the inductive side. The range of ΔB for this example is 102 MHz < ΔB < 237 MHz. The bandwidth of the selected Op-Amp should be between the ΔB_{min} and ΔB_{max}. For a selected Op-Amp the K_c value is fixed and it does not depend on the n value. This K_c value should accomplish the range of K_c. For this design example the K_c value is equal to 1/2.56 V/A. The selected Op-Amp is AD8061, the ΔB is equal to 135 MHz and the A_{DC} is equal to 68 dB.

3.- Determine the range of the impedance scaling magnitude (n): The range of the impedance scaling magnitude ($n_{min} < n < n_{max}$) should be selected in order to reduce the influence of parasitic on R_{eq} and C_s and in order to limit the parasitic effects of the Op-Amp (input capacitance and input bias current).

For the design example the range of the “n” value is: 1000 < n < 26500.

Design considerations: The R_{req} value should be at least tens of ohms (in order to reduce the influence of R_i) and Cs value should be at least hundreds of pF (in order to reduce the influence of parasitic effects).

4.- Select the impedance scaling (n): The value of the parallel RLC network is given by equations (1), (2) and (3). For a given output capacitor (C_{out}, ESL and ESR) and switching frequency, the parallel RLC network depends only on parameter n. For each “n”, there is only one value for R_{eq}, C_s and L_s. The “n” value should be selected in order to have a reasonable value of the parallel RLC network (C_s, R_{eq} and L_s).

The “n” value for the design example is equal to 10000. The parallel RLC network that accomplishes the design methodology is composed of C_s = 400 pF, L_s = 4.4 µH, R_{eq} = 48 Ω, R_1 = 3.7 kΩ, R_i = 1.5 Ω and R_s = 47 Ω.

Simulation results and tolerance analysis (Influence of different ΔB and A_{DC})

The design methodology is validated by simulation. The influence of the variation of ΔB and A_{DC} in the performance of the sensor has been analyzed by simulation. These variations produce different constant times between the sensed current and C_{out} current. In spite of these variations a robust system is obtained. Figure 11 shows the validation of the current sensor design, this validation is done by simulation, it shows that both signals are in phase, scaled amplitudes and the peaks of the waveforms are in phase.

However, the design of this current sensor is sensitive to tolerances of bandwidth and dc gain of the Op-Amp. Figure 12 and Figure 13 show the current sensor designed for 135 MHz but, the real ΔB of the Op-Amp is 100 MHz and 170 MHz respectively. These figures show that different bandwidth produces different constant times, but the peaks of the triangular waveform are in phase (Figure 12 and Figure 13). Finally variation in dc gain of the Op-Amp produces a negligible effect in K_c value (Figure 14).
IV. EXPERIMENTAL VALIDATION

The design specifications for the experimental validation are: a discrete buck converter switching at 5 MHz, $C_{out} = 4 \, \mu F$ (4·1 μF), $V_{in} = 3 \, V$, $V_{out} = 1 \, V$, $R_{load} = 2 \, \Omega$. The design of the control loops is presented in [24]. This control has a very fast transient response at constant switching frequency (voltage step from 1.5 V to 2.5 V and 2.5 V to 1.5 V in 2 μs). Also, the response of this control to load step is really fast thanks to the hysteretic control.

Figure 15 validate the design methodology of the current sensor design. It also shows that the sensor measurement (V_s) and the I_{out} current are in phase and with scaled impedances.

Figure 16 shows a very fast voltage step from 1.5 V to 2.5 V and 2.5 V to 1.5 V in 2 μs. V_s is the output of the current sensor and it shows an appropriate current measurement for a fast transient response. Therefore, experimental results validate the current sensor design for a very fast transient response.

Figure 17 shows the regulation under 45 A/μs load step. Under a 1 A load steps the output voltage deviation is approximately 50 mV being the output capacitance only 4 μF (4·1 μF). Therefore, the response of the current sensor is validated under aggressive load steps.

V. CONCLUSIONS

This paper presents a design methodology for a non-invasive sensor of the capacitor current. The sensing circuit is designed to mirror the actual capacitor current with a trans-impedance amplifier by matching phase and scaling the impedance of the output capacitor (C, ESR and ESL).

The sensor includes a trans-impedance amplifier whose input impedance behaves like an inductive and resistive series network that provides the inductive (Li) behavior required to match the ESL. Tolerance, sensor limitations and internal stability of the Op-Amp are considered in the design procedure. Applying the proposed design methodology, values for the parameters K_c, R_s and C_s are determined and an operational amplifier with adequate characteristics of ΔB and A_{DC} is selected. Simulation and experimental results validate the
proposed design methodology. Tolerances of the system produce mismatch in the time constants of the sensor, however the control technique is robust and operates properly. Experimental results show that this current sensor is appropriate to achieve a very fast dynamic response in Buck derived converters (step voltage from 1.5 V to 2.5 V and 2.5 V to 1.5 V in 2 μs). Also, the response of the current sensor under load steps is experimentally validated.

REFERENCES