Improved parameterization of marine ice dynamics and flow instabilities for simulation of the Austfonna ice cap using a large-scale ice sheet model

Thorben Dunse, Ralf Greve, Thomas V. Schuler, Jon Ove Hagen, Francisco Navarro, Evgeniy Vasilenko, Carleen Reijmer

1. Department of Geosciences, University of Oslo, Oslo, Norway. thorben.dunse@geo.uio.no
2. Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.
3. ETSI Telecommunicación, Universidad Politecnica de Madrid, Madrid, Spain.
4. Institute of Industrial Research Akademie, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan.
5. Institute for Marine and Atmospheric Research, Utrecht University, Utrecht, Netherlands.

Background

- dome-shaped and of compact size
- annual extent: 8120 km²
- max surface elevation: 800m
- mean/max ice thickness: 310/580
- 28% of Austfonna grounded below sea level - up to 57% in case of three known surge-type basins
- applicable case study for numerical simulation of marine ice sheets

Motivation

- observed thickening in the interior and thinning at the margins
- change in accumulation-ablation pattern or a build up towards renewed surge activity
- address surface processes and glacier dynamics by combining ongoing glacier observation with numerical modelling

Austfonna

- surf velocity measurements recently restricted to winter snapshots of mid 1999/2000
- slope move ice cap (<10 m/a) interpreted by fast flow units (>100 m/a)
- new stake networks on Basin-3 and Duvebreen
- 5 stakes each, along central flow line
- equipped with GPS receivers (IWU, Utrecht) for continuous positioning at 1h interval

Simulation Code for Polythermal Ice Sheets³

- shallow-ice approximation
- finite-difference method on a regular grid
- accounts for cold and temperate ice

Model input

- bedrock topography (present & elevated)
- surface topography
- precipitation field
- surface air temperature
- geothermal heat flux
- sea level

Model output

- ice extent & thickness
- velocity field
- temperature field
- water content (temp ice)
- snow load
- age of ice
- rebound of lithosphere

Marine ice margin

- balance of inflow and ice loss determines whether ice allows (re) advance of marine margins
- fast flow occurs despite the lack of considerable temperate ice volumes

DICPOLIS & model input

- real marine ice margin has a vertical calving front. Position may be described using empirical formulae based on the flotation criterion
- works well for retreating margins, but prohibits marine advance
- (margin must move in one step (0.1 - 1 yr) to next grid point (1.2 km) while overcoming the flotation criterion)

Marine ice margin

- underwater (ice) η®
 - submarine ice allowed to form
 - cumulative mechanism accounts for sub-grid position changes
 - negative sm2 (low elevation) and calving Qp proportional to local water depth Dp and ice thickness H to a certain power

\[Q = k D^2 H \]

- balance of inflow and ice loss determines whether the local ice thickness exceeds or falls below flotation thickness

- post-processing may cut off unice for realistic extent of marine ice margin

Results – steady fast flow versus surge behavior

- surf velocity measurements currently restricted to winter snapshots of mid 1999/2000
- slope move ice cap (<10 m/a) interpreted by fast flow units (>100 m/a)
- new stake networks on Basin-3 and Duvebreen
- 5 stakes each, along central flow line
- equipped with GPS receivers (IWU, Utrecht) for continuous positioning at 1h interval

Dynamic regime

- steady fast flow versus surge behavior in conjunction with marine ice dynamics strongly affect the steady-state geometry of Austfonna

Sliding (enhanced for marine grounded ice)

- activated when temperate base develops during build-up phase (increased insoluation)
- required to produce coincident present-day ice cap and areal extent
- increased draw-down of ice thickness during active phase (enables surge behavior at present ice thickness)
- rigorous flow enhancement leads to drastic surges of regional occurrence

- uw ice allows (re-) advance of marine margins
- fast flow occurs despite the lack of considerable temperate ice volumes

Thermal regime

- low-frequency GPR (20 MHz)
 - internal reflection horizons down to 200 m
 - absence of reflections below 200 m along most meltwater pathways

- exception: lower reaches of Duvebreen

- crevasse route surface meltwater into glacier (direct warming and latent heat release)

Low-frequency GPR (20 MHz)

- internal reflection horizons down to 200 m
- absence of reflections below 200 m along most meltwater pathways

- exception: lower reaches of Duvebreen

- crevasses route surface meltwater into glacier (direct warming and latent heat release)

Observations