UNIVERSIDAD POLITÉCNICA
DE MADRID

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS
INFORMÁTICOS

EIT DIGITAL MASTER IN DATA SCIENCE

Maggy: Open-Source Asynchronous Distributed Hyperparameter Optimization Based on Apache Spark

Master Thesis

Moritz Johannes Meister

Madrid, July 2019
This thesis is submitted to the ETSI Informáticos at Universidad Politécnica de Madrid in partial fulfillment of the requirements for the degree of EIT Digital Master in Data Science.

Master Thesis
EIT Digital Master in Data Science
Thesis Title: Maggy: Open-Source Asynchronous Distributed Hyperparameter Optimization Based on Apache Spark
July 2019

Author: Moritz Johannes Meister
Bachelor of Science
Maastricht University

Supervisor:
Alberto Mozo
Professor

Co-supervisor:
Jim Downling
Associate Professor

SISTEMAS INFORMÁTICOS
E.T.S DE ING. DE
SISTEMAS INFORMÁTICOS
Universidad Politécnica de Madrid

Division of Software and Computer Systems
KTH ICT School
KTH Royal Institute of Technology in Stockholm

ETSI Informáticos
Universidad Politécnica de Madrid
Campus de Montegancedo, s/n
28660 Boadilla del Monte (Madrid)
Spain
Abstract

Title of the thesis: Maggy: Open-Source Asynchronous Distributed Hyperparameter Optimization Based on Apache Spark
Author: Moritz Johannes Meister
Advisors: Kim Hammar and Robin Andersson

For the past two years, Hopsworks, an open-source machine learning platform, has used Apache Spark to distribute hyperparameter optimization tasks in machine learning. Hopsworks provides some basic optimizers (grid-search, random-search, differential evolution) to propose combinations of hyperparameters (trials) that are run synchronously in parallel. However, many such trials perform poorly, and waste a lot of hardware accelerator cycles on trials that could be stopped early, freeing up resources for other trials. In this thesis, the work on MAGGY is presented, an open-source asynchronous and fault-tolerant hyperparameter optimization framework built on Spark. MAGGY transparently schedules and manages hyperparameter trials, enabling state-of-the-art asynchronous optimization algorithms, thereby increasing resource utilization and increasing the number of trials that can be performed in a given period of time up to 30% on a fixed amount of resources. Early stopping is found to perform best when the model is sensitive, in terms of generalization performance, to the hyperparameter configurations.
Dedication

This thesis is dedicated to my family: Karin, Kurt, Leonie, Ina, Lotta and Matthias.
Acknowledgements

Firstly, I would like to thank my supervisor Alberto Mozo, Professor at E.T.S de Ing. de Sistemas Informáticos UPM, for the remote supervision of my thesis.

Secondly, I thank my company supervisor Jim Dowling, Associate Professor at KTH ICT school and CEO of Logical Clocks AB, for giving me the opportunity to join the team at the company and for the help throughout the process of writing this thesis. Moreover, I would like to thank my advisors at the company, Robin Andersson and Kim Hammar, for constantly challenging my ideas and helping me get familiar with the Hopsworks platform. Especially, Robin Andersson for his previous work done on the topic and his expertise on Graphics Processing Units. The entire Logical Clocks team was always helpful and I would like to thank them for the opportunity to present my work at their meetup in front of a big audience, as well as for providing the computational resources to conduct the experiments.

Thirdly, I wish to thank my fellow students, colleagues, friends and family supporting me along this project. Sina Sheikholeslami for the code and thesis reviews, my friends for proof-reading the thesis and my family for the constant moral support.

Finally, I would like to thank EIT Digital for providing me with the possibility to complete this study at two different universities, in two different countries, making countless new friends and valuable experiences. It’s these kind of things that make me believe in the concept of the European Union.
Contents

1 Introduction 1
 1.1 Hopsworks 2
 1.2 Problem Description 2
 1.3 Goals 4
 1.4 Purpose 4
 1.5 Hypothesis 4
 1.6 Boundaries 4
 1.7 Ethical, social and environmental aspects 5
 1.8 Structure 6

2 Background 7
 2.1 Automated Machine Learning 7
 2.1.1 Terminology and Definitions 8
 2.1.2 Problem Setup: What to automate? 9
 2.1.3 Automation techniques: How to automate? 12
 2.2 Apache Spark 21
 2.2.1 Architecture 22
 2.2.2 Driver - Executor Communication 23
 2.2.3 Execution scheduling 24
 2.2.4 Spark and Distributed Deep Learning 26
 2.3 Related Work 26
 2.3.1 Hops-Experiments 27
 2.3.2 Hyperopt 28

3 Methods .. 31
 3.1 Research methods 31
 3.2 Data Collection and Analysis 32
 3.3 Open-Source Best Practices 32
3.3.1 Semantic versioning .. 32
3.3.2 License .. 33
3.3.3 Documentation ... 33

4 Design and Implementation 34
 4.1 Motivation and Use Case 34
 4.1.1 Scenarios ... 35
 4.1.2 Requirements 36
 4.2 Spark integration .. 36
 4.3 Interfaces ... 38
 4.3.1 User ... 38
 4.3.2 Developer ... 40
 4.4 Architecture ... 41
 4.4.1 High level view 41
 4.4.2 Driver-side .. 43
 4.4.3 Executor-side 45
 4.4.4 Communication 46
 4.4.5 Logging .. 48
 4.5 Failure assumptions and behaviour 49
 4.5.1 Executor failure 49
 4.5.2 Driver failure 51
 4.6 Security .. 51
 4.7 Testing .. 52

5 Results and Analysis .. 53
 5.1 Experiments ... 53
 5.1.1 Experimental Setup 54
 5.1.2 Hyperparameter Optimization Task 54
 5.1.3 Neural Architecture Search Task 59
 5.2 Validation and Discussion 61

6 Conclusion .. 64
 6.1 Future Work ... 66

Bibliography .. 68

A Maggy Implementation Details 73
 A.1 API Details ... 73
 A.2 Diagrams .. 74
List of Figures

2.1 A typical machine learning pipeline ... 10
2.2 The subsets of Auto-ML ... 11
2.3 The human iterative optimization approach vs. black-box optimization .. 13
2.4 Greedy iterative approaches to hyperparameter optimization 14
2.5 Comparison of grid and random-search 15
2.6 Reinforcement learning for Neural Architecture Search 18
2.7 Architecture of Apache Spark .. 23
2.8 Spark Tasks - runtime representation of RDD partitions 25
2.9 Synchronous hyperparameter optimization on Hopsworks with hops-util-py 28
2.10 Architecture of parallel distributed Hyperopt 29

4.1 Parallelization of black-box optimization 35
4.2 Spark inefficiency with asynchronous workloads 36
4.3 Unavailability of dynamic scheduling in Spark 36
4.4 MAGGY within Apache Spark .. 37
4.5 High-level architecture overview of MAGGY 42
4.6 RPC communication within MAGGY .. 47
4.7 UX of MAGGY experiments in Jupyter .. 48

5.1 Hyperparameter optimization results over time on cuda-convnet 58
5.2 Neural architecture search results over time on CIFAR-10 61

A.1 Class diagram driver side of MAGGY .. 75
A.2 Class diagram RPC module .. 76
A.3 Starting a Maggy experiment at runtime 77

B.1 ASHA Experiment "Small CNN Architecture Tuning Task" 79
List of Tables

4.1 The work to be executed by the worker thread depending on messages . . 44
4.2 Client to server communication protocol 47

5.1 Search space for the hyperparameter optimization task. 55
5.2 Hyperparameter optimisation task: Resource allocation for SHA 56
5.3 Hyperparameter optimization task: Average results over three repeated runs per optimizer with standard deviations in parentheses. 58
5.4 Search space for the neural architecture search task. 60
5.5 Neural architecture search task: Average results over three repeated runs per optimizer with standard deviations in parentheses. 61

B.1 Search space for the "small CNN architecture tuning task" of Li et al. [44] 78
B.2 ASHA Experiment "Small CNN Architecture Tuning" task: Average results over three repeated runs per optimizer. 79
Chapter 1

Introduction

Unknowingly, machine learning (ML) has become part of our daily life in many ways. Be it speech assistants, music recommendations or soon to be autonomous cars. We have seen an explosion of ML research and applications, in specific, deep learning (DL) methods have led to a drastic increase in performance of the models, e.g. AlphaZero by Google’s DeepMind can now beat human world champions in the games of chess, shogi (Japanese chess) and Go - all as a single system [1].

However, even though we often label these successes with the term artificial intelligence (AI), building such systems requires a team of highly trained and specialized data scientists and domain experts with human intelligence [2]. These teams have to make a plethora of design decisions, significantly influencing the performance of the machine learning methods. Particularly in deep learning [3], where model complexity grows quickly for a learning problem, the experts have to decide on the right neural architectures, training procedures, data preparation, regularization methods and hyperparameters of all of these to produce the desired predictive power. Typically, hyperparameters are set statically, and data scientists often have to perform tens or hundreds of experiments in a trial and error manner to find good parameters for their machine learning system. This makes the development of machine learning pipelines an expensive and time consuming process.

Due to the growing amount of data needed to train good deep neural models, as deep models work best with larger data sets, but also because of the complexity of the models itself, a lot of research effort was recently put into the development of efficient optimization algorithms and systems to distribute computations in a cluster of computers in a scalable and fault-tolerant manner. As a result, the open-source distributed general-purpose cluster-computing framework Apache Spark (Spark) [4], originally introduced by Zaharia et al. [5], gained widespread popularity among data scientists. Spark offers a pro-
gramming interface to program entire clusters of computers with implicit data-parallel and fault-tolerant applications. This is called horizontal scaling and proved to be a success for data parallel tasks such as data preparation and iterative loops. Another way of scaling is vertically, by adding more computational power to the same physical machine, which has given rise to the usage of specialized hardware accelerators such as Graphics Processing Units (GPUs), Tensor Processing Units (TPUs) and Field-Programmable Gate Arrays (FPGAs). These accelerators are fast at embarrassingly parallel tasks such as matrix multiplications and therefore very popular and preferred for deep learning tasks. In particular, GPUs are being adopted due to their good price/performance ratio, compared to the still very expensive FPGAs. However, clusters of computers and their administration, especially with specialized hardware accelerators, are expensive and therefore efficient usage is highly desirable.

This thesis tackles the efficiency of hyperparameter optimization tasks with a transparent Python framework based on Apache Spark called MAGGY.

1.1 Hopsworks

Hopsworks is a full-stack platform for data science built on HopsFS. HopsFS [6] is an open-source distribution of the Apache Hadoop Distributed File System (HDFS) that keeps metadata in a NewSQL database instead of in-memory on a single node, thereby mitigating the main scalability bottleneck in HDFS, achieving a 16x higher throughput and scaling to larger cluster sizes with significantly lower client latencies. Furthermore, the developers of HopsFS made efforts to allow YARN to manage GPUs as a resource.

Hopsworks [7] is the front-end for HopsFS. Hopsworks integrates many popular platforms such as Spark, Flink, Kafka, HDFS, and YARN, therefore making it easy for users to interact with Hadoop. Hopsworks has unique support for project-based multitenancy, scale-out ML pipelines and managed GPUs-as-a-resource, therefore, hiding the complexity of providing the scalability to the end-user, usually a data scientist.

1.2 Problem Description

The availability of means to combine horizontal and vertical scalability as described above, offers the promise of reducing the time required to perform experiments, among others, to find good hyperparameters or neural architectures, to be proportional to the availability of hardware accelerators. That is, assuming the availability of tens or hundreds of GPUs,
it should be possible to parallelize experiments over all those GPUs using some supplied search algorithm. Hyperparameter performance space is quite often not differentiable, so gradient-based searches are typically not feasible. Instead, more robust (but less efficient) methods such as random-walk, and grid-search are used. Other popular methods are Bayesian Optimization [2] and Hyperband [8].

The search for good parameters resembles a black-box optimization problem with an expensive function to evaluate, which is the training of the model with a set of parameters or an architecture [2]. The processes of evaluating the black-box function at different points of the search space are independent and, therefore, the training of different models can be scaled horizontally, by having each available machine train a different model, which will be called a trial. Additionally, these machines can be scaled vertically by using GPUs. However, many such trials perform poorly, and we waste a lot of CPU and hardware accelerator cycles on trials that could be stopped early. By stopping poor trials early, expensive resources are freed up for other trials to explore the search space, allowing for a more efficient use of resources.

Hence, the problem can be defined in two dimensions:

1. **Algorithmic:** A limitation of existing black-box optimization algorithms is that they are typically stage or generation-based. For example, if genetic algorithms are used for hyperparameter search, one has to wait for all models to finish in order to generate a new generation of potential parameters from the best performing individuals. Hence, no new trial can be scheduled on the resource until the entire stage of the algorithm finished. However, there are algorithms that do not suffer from this synchronism but can be deployed asynchronously, that is, new hyperparameter combinations can be produced independent of models currently being trained. The research question in this dimension can be formulated as: Which algorithms can be used asynchronously and how do they perform?

2. **System:** Apache Spark does not support asynchronous task scheduling, and therefore asynchronous algorithms and early stopping do not fit into the execution model of Spark by default. For this side of the problem it is being asked: Can Spark be leveraged to provide system support for fault-tolerant, asynchronous hyperparameter optimization?
1.3 Goals

The main thrust of this project involves building platform and algorithmic support for asynchronous hyperparameter optimization (HPO) and neural architecture search (NAS) with Apache Spark, on the Hopsworks platform.

Hence, the project is successful if:

1. We can provide a simple API to end users to conduct HPO experiments.
2. We implement a framework to asynchronously schedule blackbox-optimization problems on an Apache Spark cluster.
3. We implement algorithms to leverage this system in order to early stop badly performing model training.

1.4 Purpose

The purpose of this work is to evaluate a possible solution to reduce time spent for tuning hyperparameters of machine learning models.

1.5 Hypothesis

Given a machine learning problem, tenths or hundreds of trials need to be performed to find hyperparameters such that a machine learning model generalizes well on unseen data. Many of such trials perform badly already early during training and can therefore be stopped to save expensive computation time.

1.6 Boundaries

The developed solution will be tightly integrated with the Hopsworks platform and therefore will not be usable on any Spark cluster. This allows us to collect important meta data about experiments, provide fault tolerance and track them during execution with Elastic Search [9] and TensorBoard [10]. Nevertheless, an early version will be usable on any
Spark cluster and can be leveraged as a proof of concept and to create traction for the project in the open-source community.

There are many asynchronous optimization algorithms which could profit from this framework and could be implemented on top of it, however, research has shown that random search is hard to beat [11] and since it is asynchronous by nature, this will be used as baseline and other algorithms will be added as time permits. Since the work is released under an open source license, the framework will instead provide an extensible and intuitive developer API, as we specified with goal (1) in section 1.3, to allow developers to implement their own optimization algorithms.

1.7 Ethical, social and environmental aspects

From an ethical point of view, the use of a framework to speed up hyperparameter optimization for machine learning does not pose any threats itself, but rather the applications that machine learning is used for can be unethical. As the performance of the models increases in terms of accuracy, so does the area where they can be applied. This includes ethical use cases creating social value, such as cancer detection, but also ethically questionable applications, such as increasing marketing effectiveness for online-gambling businesses. Therefore, practitioners and companies need to make sure they use the technology in a responsible way.

Another social aspect includes data privacy, which plays a role as soon as data leaves secure system environments. To conduct this research and build the described system, data needs to be transferred across a network which might be intersected by adversaries. However, the content of the data itself is not sensitive with respect to the disclosure of individuals, hence we are not at risk from that perspective. Nevertheless, measures are taken to make the system as secure as possible, more about these measures for the security of this work is described in section 4.6.

Nowadays, a considerable amount of energy is spent on computational power. The recent past has shown that deep learning accuracy mainly increases with the use of more data, which on the other hand requires more computational power and hence also more energy. Therefore, from an environmental perspective it makes sense to invest into research to make more efficient use of resources.
1.8 Structure

Firstly, a background section is following to introduce terminology adopted and needed throughout the rest of the report. Furthermore, the information needed to comprehend the thesis is provided as well as an overview of the state-of-the-art in the field. Having set the scope and background, a chapter on the development and research methods conducted throughout the project is presented. This is followed by a chapter dedicated to the description of the implementation of this project - a python framework for asynchronous hyperparameter optimization on Apache Spark. The chapter describes the requirements, architecture and design of the software system and a justification of the design decisions made. Subsequently, we present the results of experiments conducted to approve or reject our research hypothesis. Finally, the thesis is concluded by a chapter to summarize the results, show future research directions and elaborate on weaknesses and future work to be done on the framework.
Chapter 2

Background

To set the context of this thesis, this chapter will introduce important concepts and a literature review on the subject matter. Firstly, there is a section defining the more general concept of automated machine learning (Auto-ML) and some terms and concepts related to machine learning and hyperparameter optimization (HPO) in order to set common ground. Possible points for automation in machine learning pipelines are investigated and is followed by an introduction of hyperparameter optimization and its current state-of-the-art. This section will also highlight the importance of hyperparameter optimization and therefore further motivate this project. Neural Architecture Search (NAS) will be presented as a special case of HPO providing more use cases for the output of this project. Subsequently, the architecture of Apache Spark will be presented in detail, since the project builds on Spark as a back-end. This section will highlight the mismatch between asynchronous scheduling and the nature of Sparks execution schemes. The last section of this chapter will cover related work to the topic, showing that other parties are working on similar solutions, but highlighting the differences and uniqueness of this project.

2.1 Automated Machine Learning

Not only do machine learning experts have to make decisions on the algorithms they use in their machine learning pipelines, but also each of these algorithms comes with a set of hyperparameters, that have to be tuned to find settings that produce well generalizing models. The field of automated machine learning or short Auto-ML aims to make these decisions in an organized and automated fashion, that is, data-driven and based on an objective metric without human input [2]. Auto-ML promises to provide machine learning to
domain experts without deep knowledge of ML itself. Having data at hand, the user simply feeds it into the Auto-ML system, which in turn will take all decisions for him, returning the approach best suitable for the specific learning problem. Hutter, Kotthoff, and Van-schoren [2] show in their book that Auto-ML approaches are very mature and can compete with, sometimes even outperform, human machine learning experts. Furthermore, recent methods have shown that resource requirements for Auto-ML applications can be reduced from several hours to few minutes [2]. When speaking about performance of supervised machine learning models in this thesis, it is referred to the generalization error, that is the error made when predicting outcome values for previously unseen data (also known as out-of-sample error). In line with these developments, Yao et al. [12] define three core goals of Auto-ML:

1. Good generalization capabilities across various data inputs and learning tasks.
2. No human input requirements, the machine learning tool is configured by the system itself.
3. The system should be efficient to produce reasonable outputs within a limited budget.

Furthermore, Yao et al. [12] introduce a taxonomy for the classification of Auto-ML problems in their extensive literature study. They divide the problem into two questions:

1. What to automate? (The problem setup)
2. How to automate? (Techniques applicable)

A literature review is conducted along this taxonomy in the following subsections.

2.1.1 Terminology and Definitions

The research and industrial community has silently agreed and adopted some terminology and definitions with only slight variations to describe problems and concepts in the field of Auto-ML. To be on a common page, this section shortly defines this terminology and how it is being adopted throughout this thesis.

1. **Hyperparameter:** A hyperparameter in machine learning, is a parameter that needs to be set manually, usually by an expert, before the learning process begins. This distinguishes it from other parameters that are to be learned through the model itself.

2. **Search Space:** A search space is a combination of multiple hyperparameters given their feasible regions.
3. **Experiment:** Given a search space, objective and a black-box function, usually the model training procedure, an experiment is the whole process of finding the best hyperparameter combination in the search space, that is, optimizing the black-box function with respect to the objective.

4. **Suggestion:** A suggestion is a hyperparameter combination sampled from the search space, that should be promising, in terms of performance, and therefore evaluated next. Suggestions are generally produced by some specified search algorithm, for example Bayesian optimization or simple random search.

5. **Trial:** A trial is the process of evaluating the black-box function at a point in the search space (suggestion/sample). The trial object contains all information related to the execution and evaluation of a suggestion.

6. **Optimizer:** The optimizer implements the logic of generating trials/suggestions from the search space based on past realisations and an optimization model. This optimizer is not to be confused with the optimization algorithm used to train the model itself.

2.1.2 Problem Setup: What to automate?

This section looks at question (1) defined in section 2.1 and the following subsections focus on question (2).

Figure 2.1 illustrates the steps of a typical machine learning pipeline and the decisions that can potentially be replaced by an Auto-ML system. There are steps that can not be replaced by an Auto-ML system such as the definition of the problem or the integration and collection of data sources. This is due to the need of domain knowledge and the connection to the real world. Furthermore, the deployment of the final model has to be done by engineers, since existing systems are usually complex and highly use case driven. However, additional to the selection of the model and the setting of its hyperparameters, there are other design decisions that influence the final model performance, and research is proposing methods to automate them. Yao et al. [12] split the problem setup in their taxonomy into two sub-problems. Firstly, the full scope general ML pipeline consisting of three parts: feature engineering, model selection and algorithm selection, concerning mainly traditional machine learning approaches like support vector machines and random forests. The second sub-problem, which presents itself as a special case of the previous one is deep learning. In deep learning all these three steps are partly integrated and configured in the neural network architecture itself. Therefore, it becomes a problem of neural architecture search. Nevertheless, good core features and feature engineering still plays
a role in deep learning. It is just, that deep learning is able to extract additional features catching characteristics not directly apparent to the expert. Along these lines, the question "How to automate?" can be answered in the following subsections. Firstly, for the general full pipeline approach and subsequently the techniques developed mainly for neural architecture search.

![Diagram of machine learning pipeline with Auto-ML integration](image)

Figure 2.1: Humans are usually involved in all steps of the machine learning pipeline to obtain good performance. The figure illustrates the parts that can be replaced or improved by Auto-ML. [12]

The remaining steps of the pipeline are considered in temporal order, starting from feature engineering. Feature engineering is the process of extracting meaningful features, that is characteristics, from raw data which are common to all independent entities on which predictions are to be done. This usually involves joining different data sources on common identifiers, making aggregations and other transformations based on domain knowledge [13]. The number of features and their quality greatly influence the complexity of the model and its generalization capabilities. There are two things to automate in this process: The generation of features and subsequent feature enhancing methods to increase the quality or select them. The generation step usually requires domain knowledge to derive meaningful features and therefore the progress here, also from a research perspective, is limited. Yao et al. [12] name this as a future research direction. However, recently methods have been developed to automatically derive large amounts of features at once, emphasize here lies on large amounts. These methods rely mainly on pre-defined transformations, such as feature multiplications, square operations, discretization or normalization. Feature Labs provide an open-source library to derive large amounts of features from relational databases [14], while ExploreKit [15] goes one step further and combines the feature generation already with selection. They show a 20% overall classification-error reduction over 25 famous datasets and three classification algorithms. This introduces a
new challenge and the need for feature enhancing methods. As the number of features grows, so does the complexity of the model and the model therefore tends to over-fit the training data points, meaning that it predicts the points that it was trained with well but generalizes poorly on unseen data. Therefore, data scientists spend a great amount of time subsequently selecting the features producing the lowest generalization error.

The selection of features can be performed in a time consuming trial and error manner or recent models are able to incorporate that step into the model itself and therefore making it a hyperparameter tuning problem. One such method is the application of regularization methods to shrink coefficients of features that don’t add predictive power towards zero, therefore limiting their influence on predictions, reducing the variance as well as the complexity of the model [16]. These methods then introduce a hyperparameter to control the regularization strength, which in turn can be tuned. Another approach is feature projection into lower dimensional spaces such as Principal Component Analysis [13], however, also here the user needs to decide on the number of components to retain, therefore, introducing a hyperparameter. This shows that feature engineering can be made a hyperparameter optimization problem by incorporating the selection into the model. However, even if the data scientist follows a trial and error approach, the decision of taking a feature into the model can be encoded in a binary hyperparameter, therefore making it a HPO problem.

![Figure 2.2: Hyperparameter optimization and neural architecture search as sub-fields of Auto-ML.](image)

While, the previous overview holds for classical machine learning approaches, with deep neural networks, features extraction is usually incorporated into the model itself with autoencoders to reduce dimensionality in data, word embeddings for language modelling or convolutional models for image data [17]. However, designing such architectures for deep learning is difficult. Among others practitioners have to decide on the number of layers and neurons, activation functions and dropout rates [18] but these can be modelled as hyperparameters too. 2.2 shows the relation of Auto-ML, hyperparameter optimization and NAS.
According to the No Free Lunch Theorems of Wolpert and Macready [19] there is no supervised learning algorithm that is superior on all possible learning tasks in the model selection step. In practice, finding even an algorithm that performs best on a small set of tasks is already hard. This means, with every new learning task, a data scientist has to try different approaches and compare. There are models known to perform well on certain tasks. Therefore, data scientists usually find suitable models fast, but every model comes with hyperparameters to be set in order to achieve the best possible generalization error. Hence, HPO is a crucial step at this point. Another approach, often called ensemble approach, requires to train many different models and subsequent combination of the predictions, for example in the form of random forests [13].

The last and most time-consuming step of the actual learning process is the training or optimization of the model on training data. Hence, the selection of the algorithm can influence the resource demand but it also impacts the performance of the final model [20]. There is usually a trade-off between resource demand and performance involved. For example, in Stochastic Gradient Descent [21] single iterations are very cheap but in order to converge to an optimum, one needs to perform many of them. Hence, it becomes a question of when to stop. As with model selection, the search space for the optimization algorithm consists of the decision on the algorithm itself and its parameters.

Finally, the evaluation of the model highly depends on the metric chosen. Often the metric is also dependent on the problem to be solved and hence this decision can’t be automated and has to be made by a human. If you want to detect cancer, for example, you want to avoid false positives under all circumstances, therefore it would be the wrong metric. However, once the metric is selected it can be used to optimize the rest of the pipeline in an iterative approach, or with the help of some black-box optimization algorithm or search algorithm.

2.1.3 Automation techniques: How to automate?

Following the taxonomy of Yao et al. [12], this section firstly considers the "How to automate?" question for the full pipeline problem, that is traditional models with the steps: feature engineering, model selection and algorithm selection. Most of these techniques will be applicable to neural architecture search if architectural design decisions are treated as hyperparameters. Methods proven to be suitable mainly for deep learning will be discussed in a separate section. This is in line with a recent survey on Auto-ML by Zöller and Huber [22]. It was already briefly discussed how feature engineering automation can be turned into a problem of hyperparameter optimization, hence further details on that step are not presented, since all following methods will be applicable to this as well.
The first step is the design of the ML pipeline. Zöller and Huber [22] find in their survey that there is a lot of research around the pipeline design problem for neural networks, but no publications treating the definition of general pipelines with classical models. They argue that most approaches assume a best practice pipeline as the one outlined in figure 2.1. There were methods proposed based on genetic programming [23] or with the recent success of reinforcement learning [1] self-play algorithms [24] have gained attention. With this approach the model plays against itself, taking decisions on whether to extend or shrink a pipeline. However, both these approaches suffer from expensive optimization, genetic programming because of the expensive function evaluations [25] and self-play due to its slow convergence [26]. For these reasons, throughout the rest of this thesis a static machine learning pipeline as illustrated in figure 2.1 is assumed. Hence, the problem is narrowed down to HPO.

Hyperparameter Optimization

The concept of HPO is not a new concept and was tackled by research already in the 1990s as it was discovered that different hyperparameter combinations work best on different datasets [27]. Also due to the No Free Lunch theorem [19], it is widely accepted that there is no default hyperparameter set for algorithms that can’t be outperformed with HPO given a specific learning task [2].

Figure 2.3: The iterative optimization loop, adopted by most practitioners (left) and its parallels to black-box optimization (right).

Human ML experts tackle HPO in an iterative trial and error approach as shown in the left of figure 2.3. They decide on a learning algorithm, set the parameters based on their expertise in order to subsequently train the model. When the training finished they validate the performance on unseen data to update their belief about the hyperparameters and continue in this way. Not only is this process slow, because the training of the model is time consuming, but it also leads to local optima since this approach is greedy. Humans usually only update one parameter at a time because they believe to have found a good setting for the others, therefore neglecting the dependence of the parameters. This greediness leads to local optima as illustrated by figure 2.4.
Figure 2.4: The greedy iterative approach to search can lead to local optima because humans usually cannot model the complex interactions between parameters, especially when the search space gets large. [28]

Additionally, and more in general, HPO suffers from a number of challenges [2]:

1. High computational cost: The training of a single large model can be very expensive (e.g. deep learning), also because data sets keep growing.

2. The search space is large and complex. Often, the search space is even too large to exhaust. Hyperparameters can be categorical, discrete or continuous and dependent on each other.

3. The loss function is usually not differentiable with respect to the search space since it’s non-convex and non-smooth. Therefore, closed form solutions do not exist.

4. Data sets are limited. Hence, the generalization error is only an approximation of the true model performance.

In fact, the optimization of a model with respect to hyperparameters is a black-box optimization problem, because the performance of the model at certain points of the parameter search space can be queried but there is no knowledge about the shape of the function that maps hyperparameter settings to the model’s performance. Figure 2.3 shows the workflow of a black-box optimization problem (right) side by side to the human workflow to highlight its similarity. In black-box optimization, there are two main components, one is the optimizer or meta-learning component which generates samples from the previously defined search space over the hyperparameters. The second component is the black-box learner, which evaluates the black-box function, the mapping from parameters to model performance, at the point in the search space, the previously generated sample. This black-box returns a single performance metric which will be used by the optimizer to update its
knowledge about the search space to subsequently produce a sample that ideally has a higher expected performance than the previous sample. This process is repeated until a certain performance is reached or until the algorithm finds an optimum, which can be local or global.

Black-box optimization tries to solve the challenges above by applying less efficient but more robust algorithms. Therefore, any black-box optimization algorithm implemented in the optimizer component, can also be applied to HPO.

Simple un-directed search:

The most straightforward and widely used algorithms for HPO are un-directed search techniques, sometimes also called model free optimization [2]. They are un-directed because they do not take into account the information gained through evaluating previous hyperparameter combinations. These algorithms have in common that they evaluate the black box function at a certain number of samples from the search space independently, followed by an aggregation step to find the combination that produces the minimum or maximum performance. Since the combinations are not related to each other, these trials can be evaluated in parallel.

![Grid Layout vs Random Layout](image)

Figure 2.5: In cases where dimensions of the search space exhibit less correlation with the generalization performance, random-search outperforms grid-search because it explores the search space better by evaluating more unique values from every dimension [29].

The most known algorithms are grid-search and random-search. For grid-search the search space is partitioned into a discrete set of values for each dimension and subsequently the model is trained at each possible combination, i.e. point in the grid. When the training of all models in the grid finished, the combination producing the lowest generalization error is returned. In contrary, for random-search, as the name suggests, the trials are drawn at random from the search space [29]. Bergstra and Bengio [29] show that random-search is more efficient than grid-search since it explores the space more efficiently, which is beneficial when hyperparameters aren’t equally important. Figure 2.5 shows this phenomenon.
Researchers proposed approaches to make grid-search adaptive by creating a more fine grained grid around well performing combinations [30]. Nevertheless, random-search has a number of additional advantages: 1. Experiments can be extended by simply drawing more random samples and evaluating them when more computational power becomes available. 2. If trials fail, the experiment results are still valid. The failed trial does not leave a hole in the grid. 3. The feasible intervals of the hyperparameters in the search space can be adjusted.

However, with a growing amount of dimensions (hyperparameters) in the search space, these approaches suffer from the curse of dimensionality and need to evaluate an exponential number of configurations to gain reasonable performance [22].

To conclude, since in both approaches trials are independent of each other, both algorithms can be deployed asynchronously for the case when trials have different optimization times. Additionally, random search has the advantage that if some trials finish much faster than others, simply more samples can be drawn from the search space, therefore allowing to evaluate more trials.

Directed adaptive search and optimization:

One class of directed search strategies is inspired by biological evolution. So called genetic algorithms possess wide applicability to black-box optimization problems and fall into the category of heuristic search [12]. These algorithms maintain a population of \(N \) configurations, which are being evaluated and subsequently the best performing ones are selected for the next generation and are either being combined (cross-over) or locally mutated for the next iteration. Mutation and cross-over is needed to introduce new configurations, therefore, creating a trade-off between exploration of new configurations and exploitation of the good ones. While these methods have been used for feature selection [31] and in NAS already decades ago [32], for general hyperparameter optimization, to the best of our knowledge, there are no publications available. These algorithms are easily parallelized within a generation, that is with a concurrency degree up to \(N \), however, across generations the algorithm is synchronous and has to wait until a generation finishes to start a new one and therefore it can’t be deployed asynchronously.

Genetic algorithms are directed but do not take the full feedback into account, an optimization technique that tries to model all information available is Bayesian Optimization. Bayesian Optimization proved to be the state-of-the-art algorithm for global optimization in black-box settings [2]. Bayesian Optimization is modelling the mapping of samples of the search space to their associated realised model performance with probabilities, given the feedback of the black-box (model training). Gaussian processes [33] or Parzen Tree Estimators [34] are popular approaches to model these probabilities. Every time an eval-
uation finishes, the probability distribution over the search space is being updated, such that a new sample can be drawn with an acquisition function, for example to maximize expected improvement. A recent addition to this family of search optimization techniques, named Fabolas, have shown improve the efficiency drastically [35], outperforming multifidelity such as the Hyperband algorithm [8], which is described in section 2.1.3. Fabolas extends Bayesian approaches to model loss and training time simultaneously as a function of the size of the data set. Thereby, it is able to automatically decide on the trade off between information gain on one hand and computational cost on the other hand. Additionally, Bayesian Optimization suffers from a cold start problem, that is, in the beginning of an experiment a few trials have to be generated at random in order to initialize the algorithm. Nevertheless, once it is initialized, this algorithm can be operated completely asynchronously in parallel because every time a trial finishes, the distribution can be updated to generate a new trial.

Neural Architecture Search

Let us know consider neural architecture search as a special case of hyperparameter optimization. For deep neural networks, which are artificial neural networks with more than one hidden layer, the candidate architectures can quickly grow exponentially. A network with 10 layers, can take more than 10^{10} different shapes.

Using evolutionary algorithms to produce neural architectures dates far back [32], but only recently with the increase of computational power available, these methods were able to produce results comparable to architectures designed by humans [36]. Real et al. [36] use repeated, pair-wise competitions of random individuals instead of a standard generation based evolution, making it a case of a tournament selection algorithm [37]. This means at each evolutionary step, two random individuals are selected from a previously initialized random population. These two individuals are compared and the worse one is immediately removed from the population. The selected one instead is mutated and will be evaluated (trained) in order to become a parent in the next iterations. Interestingly, this allows the algorithm to operate asynchronously, since a worker can pick two individuals at any time and is not bound to generations. This eliminates the previously mentioned shortcoming of generation-based algorithms. In the initial population, Real et al. [36] start with simple one layer networks, in order to analyse if the method is able to come up with good architecture completely by itself. In their empirical evaluation Real et al. [36] conclude that this method is able to construct accurate architectures on challenging problems with large search spaces and from simple one layer networks, given that there are enough computational resources available. Another advantage of their approach is that the final result will contain the fully trained model. However, they highlight that future research should focus on making the
process more efficient to make it a viable option to replace human experts.

Figure 2.6: The control flow for using reinforcement learning for neural architecture search. It fits the black-box optimization framework well. [38]

Among the algorithms that were studied for the application in NAS, reinforcement learning has shown great potential. Reinforcement learning models the problem of an agent that needs to adapt his behaviour to a dynamic environment. The agent interacts with the environment in a trial-and-error approach to learn about it and adjust its behaviour [39].

Zoph and Le [38] use reinforcement learning to train a recurrent neural network (RNN) that is able to produce accurate neural architectures. RNNs are a special class of artificial neural networks that can model temporal dependencies. Figure 2.6 shows how this learning loop.

A controller (the agent) consisting of the RNN proposes a model architecture which can in turn be evaluated to produce the model performance as feedback. The RNN uses this feedback to update its search policy, thereby giving higher probabilities to more promising architectures. The empirical results of this method are very promising. Not only do Zoph and Le [38] show that this approach can find novel architectures that are better than most human-invented architectures on well known learning problems, but also from a qualitative perspective the results are interesting. While the discovered architectures have things in common with those designed by experts, there are some structures that humans did not expect to perform well. Hence, the automated solution is not only able to produce better generalizing architectures, but also to discover new architectures that can further accelerate deep learning by allowing experts to get a better understanding of neural architectures.

Performance evaluation efficiency

Thus far, techniques were considered that aim at making the left side of the black-box optimization loop, that is the optimizer, more efficient by using algorithms that can find good
parameters with evaluating less trials. This section is dedicated to techniques for improving the efficiency of the black-box learner itself. Two possible solutions will be presented:
1. Early stopping of trials. 2. Algorithms that adapt resources of trials according to their performance, so called multi-fidelity methods. One can think of multi-fidelity methods as if they have early-stopping integrated by default, sometimes also called principled early stopping.

By adding any of these two methods to a synchronous algorithm, the need for an asynchronous mechanism for producing new trials arises, else it does not make sense from an efficiency point of view. Hence, stopping a trial early, the algorithm needs to be able to produce a new configuration right away without waiting for other trials. As outlined before, random-search and Bayesian optimization are examples of such algorithms.

Early stopping:

Early stopping methods can be categorized in two classes: 1. Heuristics that take only information about the trial itself into consideration in deciding whether to stop the trial in questions and 2. methods taking into account all available information, that is, of trials currently in the process of being trained and previously finalized trials. When speaking about information of the performance of trials, it is being referred to the learning curve, that is the error, loss or accuracy tracked over the time of training.

Let’s consider the first case: It is common practice to early stop model training when the validation loss does not decrease for a specified number of iterations or even starts to increase, indicating over-fitting. Furthermore, some hyperparameter settings can make a model diverge instead of converging during optimization, this case can easily be detected by only looking at the learning curve of the single trial.

While the first case is mainly used to prevent over-fitting, the second case is more complicated but also more interesting to reduce training time: A heuristic called the Median Stopping Rule implements the simple strategy of stopping a trial if its current performance during training falls below the median of other previously finalized trials at similar points in time of training. This strategy does not depend on a parametric model and therefore does not introduce more hyperparameters. Golovin et al. [40] use this rule in their Vizier black-box optimization service at Google and argue that due to its generality it is applicable to a wide range of learning curves. This rule assumes that information about the learning curves of all previous trials is available, for which a special mechanism is needed, in order to centrally manage the execution of trials and collect the information.

An alternative global stopping rule is based on extrapolation of the performance learning curves of trials in order to make a prediction for the final performance value [41]. Given the set of finalized trials, a regression is performed in order to subsequently make
a prediction for the partial curves of trials currently in training. Given the current optimal value, if the probability of a trial to exceed this optimal value is below a threshold, the trial should be stopped early. Domhan, Springenberg, and Hutter [41] use Bayesian parametric regression, while Google Vizier [40] uses a Gaussian process model with a specially designed kernel to measure similarity between learning curves. Moreover, Google has found that this approach is applicable to a wider range of learning curves and is more robust to those other than hyperparameter tuning. They note that it surprisingly also works well if the performance curve does not measure the same metric as objective value of the model optimization. More recent approaches [42] use Bayesian neural networks exploiting its flexibility by adding a learning curve layer building on the approach of [41]. This method outperforms the Bayesian parametric regression [41] for predicting entirely new curves, but also for extrapolating partial learning curves, especially when the curves have not started to converge yet.

The disadvantage of learning curve prediction compared to the median stopping rule, is its relative expensiveness in terms of the computational complexity. A model needs to be learned and updated for the predictions. This can become a problem when the system is supposed to be fault-tolerant, as the learning curve model possesses a state. In contrary, the median rule only does comparisons and median computations and therefore does not necessarily have to retain a state.

Multi-fidelity methods:

Multi-fidelity approaches try to approximate the performance of a model by only training it with a constrained resource. The resource can be the amount of data, the number of training iterations or epochs for neural networks or the number of features. The goal is to give more resources to hyperparameter combinations that are promising in order to produce robust results.

Jamieson and Talwalkar [43] propose a method called Successive Halving based on bandit learning. The algorithm follows simple logic. Initially n random combinations are drawn from the search space, of which each is trained with a fraction $1/n$ of the total resources available. Subsequently, as the name suggests, the best performing half of the trials is promoted to the next iteration, also called rung, with twice the initial budget allocated. This procedure is repeated until only one trial remains. The rationale behind this logic is that good trials receive exponentially more training time than bad ones. Jamieson and Talwalkar [43] show empirically that this yields generalization errors comparable to baseline methods but in significantly shorter experiment time. However, one limitation of the algorithm is that it introduces a new hyperparameter, n, that has to be selected. This poses a trade-off between exploration and more robust results. Choosing a larger n to start with covers more areas of the search space, increasing the initial probability of finding a point
close to a global optimum, but the approximation with the low resource might change over the course of the experiment.

Addressing the shortcoming of the previous algorithm, Li et al. [8] propose a modification to successive halving called Hyperband. They reason that if randomly selected configurations perform similarly well and converge slowly, then you would start the experiment with a small number of trials in the first iterations, therefore fully exploiting your budget. Based on this observation, they propose to loop over multiple different values for \(n \), which they call brackets, while keeping the budget fixed. Essentially treating \(n \) as a new hyperparameter and performing grid-search over feasible values. In their empirical evaluations they find that with increasing number of dimensions in the search space, the most exploratory brackets (large \(n \)) perform best. Hence, especially for neural architecture search, Successive Halving with large \(n \) is sufficient.

Regarding the parallelization of the previous two approaches, both suffer from a major problem. Assuming the availability of many workers, each of which can train a single model at a time, as the number of configurations is halved at every iteration, once the number of trials in an iteration is below the number of available workers, some resources will be idle. A recent publication by Li et al. [44] addresses this issue and also the shortcoming of selecting an appropriate \(n \). The Asynchronous Successive Halving Algorithm (ASHA) [44] changes the Successive Halving algorithm by promoting trials bottom up to the next rung whenever possible instead of waiting until a wide set of trials finished in the first iteration. ASHA starts by assigning workers to add configurations to the lowest rung with the lowest resource. As workers finish and request a new trial, ASHA looks at the rungs from bottom up to see if there are trials in the top \(1/\eta \), where \(\eta \) is the reduction factor, which does not have to be 2 as in the case of successive halving. If no configuration can be promoted, the worker will grow the lowest rung so that subsequently more trials can be promoted. This asynchronism allows near 100% resource utilization, while evaluating more trials and therefore exploring the search space more. Li et al. [44] show that this method scales linearly with the number of workers and therefore is superior to other state-of-the-art methods especially when many workers are available.

2.2 Apache Spark

"Apache Spark is a unified analytics engine for large-scale data processing." [4]. It is based on a distributed memory abstraction developed by Zaharia et al. [5] in 2012 and it is called unified because this abstraction can be used for ETL, batch and stream analytics, machine
learning and graph processing. It offers rich high-level application programming interfaces (APIs) in various programming languages: Scala, Java, R, SQL and Python, also called PySpark. One of the main goals of this project was to create a framework that runs on top of Apache Spark. The reason for that being that Spark became the industry standard for data intensive computing, got adopted by many corporations and we do not want to add additional administration overhead for a new system. A data scientist who is comfortable working with Python or even PySpark should be able to use the framework with the lowest possible barrier to get started. Many surveys find Python to be the most popular programming language among data scientists\(^1\), further motivating the use of Python for the proposed solution.

This section is mainly based on "The Internals of Apache Spark" gitbook by Laskowski [45]. He provides a detailed description of the low-level internals of the Apache Spark Core. Furthermore, the official documentation and programming guides of Spark [4] served as a source for these descriptions.

2.2.1 Architecture

Spark utilizes a master/worker setup. A Spark application runs as an independent set of Java Virtual Machine (JVM) processes on a cluster of computers, which get coordinated by the so called SparkContext object in the main program. The main program with the SparkContext is called the driver and builds the entry point to the programming interfaces of Spark. The Spark application is alive as long as the SparkContext exists. The driver connects to a cluster manager, also called master, to request resources, i.e. processes, on the worker machines. Spark comes with a standalone cluster manager but it also supports external resource managers. Hopsworks uses a modified version of Hadoop’s Yet Another Resource Negotiator (YARN) [46] [47] that is able to treat and isolate GPUs as a resource. YARN is responsible for managing resources of a cluster by allocating them as containers or processes to applications. Once the driver got allocated the required resources, it can start executors on the worker nodes. Executors are responsible for doing the computational work and run in separate JVMs. This means each application has its own executor processes to isolate them from each other, but it also means that there is no possibility to share data between Spark applications (instances of SparkContext).

It is possible to run driver and executors all on the same physical machine (horizontal cluster), on separate machines (vertical cluster) or a mix, meaning one can run multiple executors on the same physical machine if enough resources are available. Typically, the

\(^1\)https://www.kdnuggets.com/2017/01/most-popular-language-machine-learning-data-science.html
Figure 2.7: The Spark architecture with driver acquiring resources through the cluster manager in order to start executors on worker nodes. [4]

driver runs close to the worker nodes, that is on the same local area network in order to be reachable by the worker nodes over the network.

Within a Spark application, multiple "jobs" can be ran in parallel if they were submitted using the *SparkContext*, but by different threads. This is needed to so that the thread can fetch the result when the job finishes. The *driver* splits the jobs into tasks and schedules them to run on the *executors*. The scheduling is explained in detail in section 2.2.3. *Executors* usually run for the entire lifetime of the application, that is the *SparkContext*, which is called static allocation, but Spark also offers dynamic allocation, which frees up resources by shutting down executors if they are not assigned any tasks for a specified period of time. An *executor* can run multiple tasks throughout the lifetime of the application, either in parallel, in multiple threads, or sequentially.

2.2.2 Driver - Executor Communication

There is only very limited communication between the driver and executors allowed and desired. The first thing an executor does when it gets started by the driver, is to register with the driver through a remote procedure call (RPC) to signal that it is available to execute tasks. From there on, the executors send periodical heartbeat messages with metrics about active tasks to the driver. This lets the driver expose a user interface, the Spark UI, to the end user, allowing to track the progress of jobs, logs of executors or health of executors in case of failure.

When a user starts a job with the use of the *SparkContext*, the application code (a JAR or Python files for example) gets serialized and sent to all *executors* and after that the *SparkContext* sends the tasks to be executed using the application code. With the tasks also any variables defined in the *driver* get shipped to the *executors* and therefore updates do not
get communicated back to the *driver* program. If multiple tasks use the same variables, they get transferred multiple times. It would be inefficient to provide read-write shared variables across tasks, but Spark provides instead two limited ways of communication through shared variables:

1. **Broadcast variables**: A read-only variable that gets cached one time on each machine instead of sending it with every task.

2. **Accumulators**: A write-only (for executors) variable that is only modified through an associative and commutative operation and is read-only for the driver. Accumulators are designed to be used safely and efficiently in parallel and are mainly meant for counters and accumulators. For example, Spark uses accumulators internally to track job progress. Custom accumulators are possible but the limitation of associative and commutative operations still applies.

The broadcast and accumulator variables are the only possibility for a user to transfer information between the driver and executors using only Spark functionality.

There is a third indirect way (message passing) of communication between the executors and driver. Spark internally uses so called *SparkListeners* to manage communication between the distributed components of the Spark application. *SparkListeners* get invoked by certain events of the Spark scheduler and therefore allow to intercept these events and execute certain actions. Users can implement custom *SparkListeners* and register them with the *SparkContext*, thereby providing the possibility for the user to add callbacks on certain events. For example, there is an interface *onTaskEnd* that gets often used to track custom metrics.

2.2.3 Execution scheduling

Execution scheduling in Spark is based on the abstraction of resilient distributed datasets (RDDs) which are a read-only, partitioned, in-memory, distributed collection of records [5]. RDDs are created through the SparkContext using so called transformations, which are deterministic operations on data in stable storage or other RDDs. Examples of transformations are the *map* or *filter* operations, which are well known from functional programming. Transformations are lazy and do not get executed right away but instead Spark keeps track of the intermediate parent RDDs throughout the transformations, also called the RDD lineage. This way the RDD has all the information it needs to compute a partition from stable storage. There is another advantage to that: Some transformations can be pipelined and therefore Spark can make performance optimization since the entire lineage is available before any actual computations are done. The partitions of the RDD are dis-
tributed among the executors such that each of them can work on a separate partition in parallel. In case of failure of one of the executors, the lost partitions can be recovered with the lineage of the RDD. RDDs only get materialized when the user invokes a so called action, for example a `collect` (returning the actual data set) or a `save` (persisting the data set in stable storage). These actions get submitted to Spark as jobs.

![Diagram of Spark pipeline](image)

Figure 2.8: In Apache Spark, tasks are the runtime representation of transformations applied to partitions of the RDD. [45]

The scheduler of Spark, called DAGScheduler which is living in the SparkContext is a stage based scheduler. Figure 2.8 illustrates how the scheduler builds a directed acyclic execution graph (DAG) from the lineage of the RDD after an `action` got invoked. Firstly, each partition of the RDD gets computed by a separate task. Tasks are the smallest unit of computational work and independent of each other since they are a transformation applied to a partition. In case of failure, because of the independence only the lost tasks have to be recomputed, therefore making it very efficient in case of failure. The DAGScheduler organizes tasks in stages, which essentially are `map` and `reduce` phases. Several mapping steps can be pipelined and executed in a single stage, while transformations involving a shuffle, like `reduce`, will be scheduled in separate stages. The reason for this being that while tasks can be executed in parallel, stages can only be started sequentially because the order matters. Hence, inside a job, a new stage can only start when the previous stage finished. Laskowski [45] summarizes this process of the execution of an application in three steps:

1. Create the execution graph of an RDD, i.e. the DAG, to represent the entire computation.

2. Create the stage graph, i.e. a DAG of stages containing the independent tasks. This is the logical execution plan and stages are inserted at shuffle boundaries, that is when computations across partitions are done.

3. Schedule and execute tasks on the executors based on the previous DAGs.

Once a job got started, there is no way to dynamically modify the DAG based on outcomes
of the tasks. This is an important insight for the solution proposed in this thesis. With the stages, Spark introduces barriers in the execution of a job and one can not artificially extend a job with additional tasks, this would need to be done in a separate job.

2.2.4 Spark and Distributed Deep Learning

In order to push the boundaries of deep learning, researchers and deep learning framework maintainers are working on distribution strategies. These distribution strategies are meant for training a single deep neural network on multiple machines. Deep learning requires massive amounts of training data to achieve the best results [48] and often Spark is used to prepare this data beforehand, therefore, increasingly more Spark users would like to embed their distributed training in Spark applications. The challenge is, Spark and distributed deep learning strategies do not match in their execution schemes. As outlined previously, Spark is based on tasks which can be scheduled in an "embarrassingly parallel" fashion, but without any communication between them. Distributed deep learning on the other hand assume complete coordination and communication between the workers. This is necessary, in order to propagate computed gradients and weights to all machines so that the model can converge.

Databricks realized this mismatch and started a project called Hydrogen\(^2\) to address the issue in Apache Spark. The first result of this project is a new scheduling mode, so called "Gang Scheduling". Gang scheduling allows to run tasks in an "all or nothing" way, meaning all tasks are started at once to block the executors, or none of them if not enough executors are available. If one of the tasks fails, the entire job fails, not making use of Spark's failure support. The reason for these statically scheduled tasks is that now deep learning frameworks can set up communication between them in order to perform distributed training.

2.3 Related Work

There are many frameworks tackling the challenge of hyperparameter optimization and also Auto-ML. To name a few: On the one hand there are mainly open-source, non-commercial solutions, of which AutoWeka [49] was the first library to include Auto-ML techniques, auto-sklearn [50] offers an extension to the popular scikit-learn machine learning library\(^3\) or very recently auto-keras [51] gained popularity for the tuning of neural net-

\(^2\)https://databricks.com/session/databricks-keynote-2

\(^3\)More information at https://scikit-learn.org/
works. However, all of these have one of the following two shortcomings: 1. They do not tackle the problem of scalability, parallelization and distribution. 2. They are compatible only with a single machine learning library. On the other hand there are commercial services: Google is providing a commercial black box optimization service in the cloud [40], H2O.ai [52] offering an open-source platform with Auto-ML support and a commercial enterprise version or determined.ai who are focusing on distributed deep learning and hyperparameter search with their platform but aren’t open-source. Even though these commercial offerings all tackle the scalability issue, they have the shortcoming of being entire systems that do not integrate well into existing data processing systems and would need to be managed and administrated, requiring additional human labour and efforts.

For the reasons above, we will not look into these solutions in more detail instead we will look at the solution that Hopsworks was using up until now and an open-source Python framework called Hyperopt with very similar goals to the ones we defined in section 1.3.

2.3.1 Hops-Experiments

For the past two years, the open-source Hopsworks platform has used Spark to distribute hyperparameter optimization tasks for machine learning. Hopworks provides some basic optimizers (gridsearch, randomsearch, differential evolution) to propose combinations of hyperparameters (trials) that are run synchronously over a distributed set of machines. The implementation uses Spark as the underlying distribution engine, where trial combinations are evaluated inside Spark map-transformations and thereby distributed over the executors. These optimizers are contained in the experiments module of hops-util-py [53], a Python helper library with utility functions for the Hopsworks platform.

These synchronous algorithms fit well into the Spark execution scheme. For un-directed search a single Spark job can be started with N tasks where N is the number of trials to be evaluated. Since RDD partitions map to Spark trials when executed, it is enough to parallelize a local Python collection with N elements (e.g. an array $[1, 2, ..., N]$) to N partitions. Subsequently, one can call a foreachPartition with the model training function as target function, since foreachPartition is an action, it will launch a job/stage with N tasks. The partition itself which will be a single number can then be used inside the task for example to select a hyperparameter combination from a array of all trials, such that each task evaluates a different one. If the number of executors is smaller than N, Spark will allocate the remaining tasks once slots on executors get available. When all tasks finished, the driver collects the results and performs an aggregation to find the trial that produced the highest or lowest accuracy/loss. The procedure is illustrated in figure 2.9 on the left.
For synchronous directed search the picture is a bit more complicated but still realizable in the Spark execution model (figure 2.9 right). As explained in section 2.1.3, most genetic algorithms are stage-based, that is, they need a synchronization barrier to proceed with the next generation of trials. This can be realized by chaining the single step (Spark job) described in the paragraph above, such that a stage of the genetic algorithm is modelled as a job in Spark. As can be seen in figure 2.9 on the right, this introduces synchronization barriers where the driver waits until all tasks in a generation have returned such that mutation and cross-over can be performed to generate the next generation. This has the obvious disadvantage that it’s sensitive to stragglers, which are machines that are slow due to failure, or due to hyperparameters that result in slower model training.

Furthermore, for both these approaches, introducing early stopping would have only a limited effect on efficiency, since early stopped machines will be idle, either until the entire job or a generation finishes.

2.3.2 Hyperopt

This section provides a discussion of the Hyperopt Python library [54], which is providing an open-source solution with the same goal of "distributed asynchronous hyperparameter optimization". In its pure Python form, Hyperopt only supports sequential evaluation of trials with a random-search or Tree of Parzen Estimators optimizer (Bayesian Optimization). In this setup, trials are tracked by keeping them in in-memory data structures such as lists and dictionaries.
In the distributed setup, Hyperopt utilizes a MongoDB database to manage inter-process communication. Figure 2.10 illustrates the architecture. The user needs to manually setup a MongoDB instance which is network visible to her/his worker machines. The user API then requires the following steps outlined in listing 2.1.

```python
import math
from hyperopt import fmin, tpe, hp
from hyperopt.mongoexp import MongoTrials

trials = MongoTrials('mongo://localhost:1234/foo_db/jobs', exp_key='exp1')
best = fmin(math.sin, hp.uniform('x', -2, 2), trials=trials, algo=tpe.suggest, max_evals=10)

Listing 2.1: Hyperopt user API.
```

The MongoTrials object is initialized, which connects to the database to fill it with trials to be evaluated. Only then can the user start the workers on the worker nodes by starting a Python script with the MongoDB address as arguments. The workers will start requesting trials from the database and updating the results in the database once they finished. While it is a good solution to have trials stored in persistent storage in the database, the process for a user to start an experiment is cumbersome. Not only does he have to set up a MongoDB but also needs to take care of network settings himself.

At the time of writing this thesis, Databricks, a company founded by the original creators of Apache Spark opened a request to integrate Apache Spark into Hyperopt.\footnote{https://github.com/hyperopt/hyperopt/pull/509} This is interesting, because it pursues the same goals as this project. Therefore, their design is
being outlined next with a quick note on why we rejected this design earlier before knowing their proposal. This will become more clear in the design section later on.

In the Databricks solution, multiple threads are started on the Spark driver. Each of these threads will submit a single job to the Spark cluster, containing a single task, which will evaluate a single Hyperopt trial. As described in section 2.2.1, the separate threads are necessary in order to collect the results when jobs return. These jobs with one task each will be scheduled on arbitrary executors, similar to the Hopsworks solution in its experiment module (section 2.3.1), relying on the Spark scheduler to distribute the work evenly across the machines. We rejected this design for two major reasons:

1. Managing the job threads on the driver can become difficult. First of all, the drivers are usually not equipped with too much computational power, so running many threads concurrently, the driver can become a bottleneck. Secondly, to shut down an experiment, one also needs to handle all the threads with the jobs and shut them down gracefully since otherwise these will keep on running on the Spark cluster. We assume these are some of the reasons why Databricks limits the number of concurrent jobs to 128.

2. This architecture does not support global early stopping decisions out-of-the-box. The driver is unaware of the current performance of the trials that are being trained and therefore it can not make decisions on early stopping taking all information into account.
Chapter 3

Methods

3.1 Research methods

Up to this point the research methodology followed a qualitative approach, assessing previous and related work, which was needed to come up with a good design for the solution that will be proposed in the remainder of the thesis. The research methodology in the remainder of the thesis follows the quantitative research method.

The thesis is divided into three deliverables. The first deliverable consists of producing a design of how asynchronous hyperparameter optimization may be integrated into the execution model of Spark, taking into account the goals specified in section 1.3. The second deliverable is the implementation of the software design. The final deliverable is to conduct experiments with the produced software in order to validate if the research hypothesis has to be rejected.

Due to time limitations, the empirical experiments conducted aim mainly at validating the research hypothesis, that is, to prove the efficiency gains of early stopping, enabled by the proposed solution. Asynchronous algorithms are only possible with an asynchronous system, therefore already providing a benefit by itself. Additionally, asynchronous algorithms can benefit from early stopping as an additional benefit. As a proof of concept, one asynchronous algorithm was implemented, specifically the ASHA algorithm [44].
3.2 Data Collection and Analysis

Long running experiments are tracked by writing statistics to HopsFS from the Spark driver every time a trial finishes training. The statistics include the final performance metric of the currently best trial, the metric and training time of the recently finished trial, the number of early stopped and total number of trials, as well as the time since the start of the experiment. With this information, it is possible to draw conclusions on speedups and the time it takes for optimizers to find good hyperparameter combinations.

The performance of the proposed solution itself will not be tested and benchmarked on a lower level for the following reasons:

1. Client-server communication in the solution is not latency critical. The training of neural networks is a computationally long process and the response times of the server to requests by the clients are negligible in comparison. For example, if an epoch takes 30 seconds, the server has 30 seconds to decide if the trial should be early stopped until it gets an updated performance metric.

2. The proposed solution is highly dependent on other frameworks, and therefore, isolating its performance would be tedious and influenced by the setup of Apache Spark, for example.

3.3 Open-Source Best Practices

The software is released as open-source with the goal to create a user base that actively contributes to the further development. To achieve this, a few best practices are adopted.

3.3.1 Semantic versioning

Versioning of the software product follows the semantic versioning\(^1\) best practices. The version number takes the form MAJOR.MINOR.PATCH, where

- MAJOR is incremented with incompatible API changes,
- MINOR is incremented for added functionality with backwards-compatibility,
- PATCH is incremented for bug fixes with backwards-compatible bug fixes.

\(^1\)Details available on https://semver.org
MAJOR version when you make incompatible API changes,

At the moment major version zero (0.y.z) is adopted for the software product. This is required because anything may change at any time and the public API should not be considered stable yet by users.

3.3.2 License

The software is released under the GNU Affero General Public License v3.0\(^2\). This is a strong copy left license, requiring to disclose complete source code of licensed works and modifications, also if it is included in larger works under the same license. The copyright and license notices must be preserved. Contributors provide an express grant of patent rights. When a modified version is used to provide a service over a network, the complete source code of the modified version must be made available.

3.3.3 Documentation

Documentation of the APIs is available in a format known by most data scientists under https://maggy.readthedocs.io/en/latest/.

\(^{2}\)Details available on https://choosealicense.com/licenses/agpl-3.0/
Chapter 4

Design and Implementation

This chapter introduces the solution developed throughout the project - **Maggy**: An open-source Python framework for asynchronous, distributed hyperparameter optimization based on Apache Spark. Building on the background of the previous chapters, the first section will summarize the motivation for such a Python library with the requirements and scenarios it should cover. The following section describes and justifies the chosen software architecture.

4.1 Motivation and Use Case

It was shown in the background section that there are algorithms available to fulfil our goals set in section 1.3 and the literature indicates that computational requirements of Auto-ML and advanced HPO are a bottleneck and therefore scalability and parallelization is desirable. So ideally, the back-box optimization loop of figure 2.3 should be adapted to the parallelized setting illustrated in figure 4.1 to fulfil the second dimension of the research problem defined in section 1.2. Horizontally scaling the black-box evaluations by adding workers to evaluate a separate trial each at any time. When a worker finishes he reports back the optimization metric to produce a new trial, which can either be kept in a queue or directly forwarded to the idle worker.

However, this raises several challenges:

1 Maggy is also a fortune teller in the television show "Game of Thrones".
2 Available on the Python Package Index (PyPI) and https://github.com/logicalclocks/maggy
3 Documentation: https://maggy.readthedocs.io/en/latest/
Figure 4.1: Providing system support for parallel black-box optimization can be realized asynchronously by adding a trial queue and scaling the evaluations of the black-box learner to multiple machines.

1. How to schedule trials on workers?
2. Which algorithm to use for search?
3. How to monitor progress?
4. Fault tolerance?
5. How and where to aggregate results?

⇒ This should be managed with platform support on Hopsworks!

4.1.1 Scenarios

Maggy should cover a range of scenarios:

Early Stopping:
Assuming new suggestions can be provided at any given time during the experiment, that is in an asynchronous fashion, it should be possible to stop an evaluation early, such that it can restart with a new, more promising configuration. Early stopping can be based on a median rule or learning curve extrapolation.

Failure:
The failure of an evaluation or of the experiment driver should not jeopardize or lead to the loss of the entire experiment.

Stragglers:
Some hyperparameter configurations can lead to slower model convergence or malfunctioning of a worker machine can lead to stragglers, these scenarios should not slow down the entire experiment.
4.1.2 Requirements

1. Maggy should run on top of Spark.

2. Maggy should provide a base of asynchronous optimization algorithms.

3. An end user should be able to take training code and run an experiment with minimal additional effort.

4. Maggy should enable its users to implement their own hyperparameter optimization algorithms without worrying about how it will be distributed and evaluated in the cluster setting.

5. Failure of a single Spark Executor should not jeopardize the entire experiment.

4.2 Spark integration

Requirement (1) is closely tied with requirement (3) and it was shown in the discussion of the Hyperopt library, how easy the overhead for a user can grow with a distributed system. However, it was also shown in the discussion of Spark (section 2.2) that Spark neither supports dynamic scheduling, nor the possibility to communicate between executors and driver, which is necessary to realize the desired system as shown in figure 4.1. Figure 4.2 shows a scenario where each Spark task evaluates a trial. The grey areas indicate the training of a model. By introducing early stopping or also through stragglers, an inefficiency is introduced due to the stage based execution of Spark. Ideally, a scenario as shown in figure 4.3 would be desirable, where every time when a task ends, a new task with a new trial can be started. However, this is not possible within the functionality of Spark itself.

Figure 4.2: Inefficiencies for stage based scheduling in Spark for asynchronous workloads.

Figure 4.3: The desired scheduling scheme for Spark which is not offered.
There are two possible design solutions to this challenge, the first of which was adopted by Databricks for Hyperopt (section 2.3.2) with multiple jobs. The main disadvantage of this design is the management of the many job threads. Instead, the design outlined in figure 4.4 was adopted. Initially, Maggy starts one task on each executor that is available to the Spark job. These tasks are blocking the executor for the entire runtime of the HPO experiment. Inside every task a RPC client is started, which communicates with a RPC server on the driver (grey arrows) to get trials to evaluate and report back metrics during training for early stopping. Additionally, both, executors and the driver can write to HopsFS (HDFS) at any time (orange arrows), e.g. for checkpointing to persistent storage. Another advantage of this design over the Hyperopt design is due to the RPC framework. Having a new job per trial it would be necessary to initialize the RPC client and open a new connection to the server every time. Each task can evaluate multiple trials sequentially, of which the execution is controlled by the RPC client.

Figure 4.4: Maggy blocks all Spark executors with one task each and sets up communication between the tasks and the driver through an RPC framework. Both, executors and driver can write to HopsFS (HDFS).

To allow for early stopping, the driver needs to collect current performance metrics from each trial during training, this is realized by means of a heartbeating mechanism. The RPC clients send a heartbeat in specified intervals with the current training metric which is to be optimized. By collecting this information on the driver it is possible to apply global early stopping rules as described in section 2.1.3.
4.3 Interfaces

In order to fulfill requirements (3) and (4) MAGGY provides two programming interfaces. One is meant for users who simply want to optimize their models and another developer API for more advanced users to extend MAGGY with their own algorithms.

4.3.1 User

The user interface is meant to be notebook-friendly, that is, all specifications to run an experiment are to be done inside the Python script that the data scientist uses for his model specification. In recent years, Jupyter notebooks\(^4\) became the preferred tool and programming environment for data scientists. Jupyter notebooks combine source code, human readable text and data visualizations in a shareable format. This is why the user should not be forced to write external specification files.

The first thing a user needs to define is a search space. Search spaces are Python objects and can be interacted with as shown in listing 4.1.

```
from maggy import Searchspace

# The search space can be instantiated with key-value arguments
sp = Searchspace(kernel=('INTEGER', [2, 8]),
                  pool=('INTEGER', [2, 8]))

# Or additional parameters can be added one by one
sp.add('dropout', ('DOUBLE', [0.01, 0.99]))
```

Listing 4.1: MAGGY search space programming interface.

A hyperparameter is defined as a tuple consisting of a type and a feasible interval. MAGGY supports hyperparameters of the following types:

- **DOUBLE**: Feasible region is a closed interval \([a, b]\) for some real values \(a \leq b\)
- **INTEGER**: Feasible region as the form \([a, b] \cap \mathbb{Z}\) for some integers \(a \leq b\)
- **DISCRETE**: Feasible region is an explicitly specified, ordered set of real numbers
- **CATEGORICAL**: Feasible region is an explicitly specified, unordered set of strings

\(^4\)More details at https://jupyter.org
This specification is in line with other Python libraries to be consistent and make it intuitive for users. Since it is not possible to distinguish these types solely based on the feasible region, the user will have to declare the type explicitly.

The next step is to take the training code and wrap it in a Python function (listing 4.2). This is the function passed to the Spark tasks to be executed. Instead of using fixed values for hyperparameters, the user passes them as arguments to the training function. There is one additional argument required - the reporter. The reporter builds the bridge between user code and Maggy. It is a shared data structure that is written to by invoking the broadcast method and the RPC client will read from it in order to send the metric to the driver with the next heartbeat. Furthermore, the metric that is broadcast (usually after every training iteration) should be the same as the final metric returned by the training function. This is the metric that the search algorithm is optimizing.

```python
def train(kernel, pool, dropout, reporter):
    # This is your training iteration loop
    for i in range(nr_iterations):
        ...
        # add maggy reporter to heartbeat the metric
        reporter.broadcast(metric=accuracy)
        print('Current acc: {}'.format(accuracy))
        ...
    # Return the final metric
    return accuracy

Listing 4.2: Maggy training wrapper function programming interface.
```

There are machine learning frameworks such as TensorFlow and Keras, for which the user does not have to write his own training iteration loops, hence, it is not possible to invoke the reporter. These frameworks usually provide the possibility to add callbacks, which get involved at certain points of training. For example, at the end of each epoch or batch for training a neural network. Maggy provides callbacks for Keras and can be extended with callbacks for other frameworks, in order to replace the reporter.

Finally, the user can start the experiment with the lagom method as shown in listing 4.3.

5https://www.tensorflow.org
6https://keras.io
7https://maggy.readthedocs.io/en/latest/user.html#maggy-callbacks-module
8"Lagom" is Swedish and means "just the right amount - not too much, not too little".
from maggy import experiment

result = experiment.lagom(train_fn,
 searchspace=sp,
 optimizer='randomsearch',
 num_trials=5,
 name='demo',
 direction='max')

Listing 4.3: MAGGY interface for launching an experiment.

These are the required arguments for an experiment, but there are a range of optional arguments which are set with a sensible default. The full list of arguments can be found in appendix A.1.

4.3.2 Developer

In order to implement custom optimization algorithms or early stopping rules, the user has to implement two abstract classes:

```python
# Developers implement abstract class
class CustomOptimizer(AbstractOptimizer):

    def __init__(self):
        super().__init__()

    def initialize(self):
        pass

    def get_suggestion(self, trial=None):
        # Return trial, return None if experiment finished
        pass

    def finalize_experiment(self, trials):
        pass

Listing 4.4: MAGGY developer interface for custom optimizers.
```

The AbstractOptimizer class has four methods that need to be implemented. The interface provides an initialization hook, for the user to set up the optimizer model or any data structures needed. The most important method is the `get_suggestion` method, which gets a finalized trial as input argument and should return a new trial, which is to be evaluated next. The end of the experiment is signaled to MAGGY by returning None here. Finally,
the user has the possibility to clean up or do some final things with a `finalize_experiment` hook at the end of the experiment. MAGGY checkpoints finalized trial to persistent storage, in case of failure these can be read from HopsFS to restart the experiment. To allow the user to reproduce the previous state of the optimizer, these re-read trials can be passed to the `initialize` method. However, this can’t be standardized and is up to the user to be implemented.

To implement a stopping rule, the user has to implement an abstract class with only one method:

```python
class CustomEarlyStop(AbstractEarlyStop):
    def earlystop_check(to_check, finalized_trials, direction):
        pass
```

Listing 4.5: MAGGY developer interface for custom early stopping rules.

This method gets a list of trials that are currently in training, a list of finalized trials to compare to and the optimization direction (min or max) as arguments and should return a subset of the trials `to_check`, which are to be stopped.

4.4 Architecture

In order to realize the functionality described in the previous sections, a series of architectural decisions was necessary. This section starts with a high-level description, followed by the driver side components, the executor side of the software and the RPC protocol. Further information on implementation details and runtime views can be found in the appendices.

4.4.1 High level view

A high level view of the architecture is shown in figure 4.5. When a MAGGY experiment is launched, the first thing to be initialized is the `ExperimentDriver`. The `ExperimentDriver` is responsible for scheduling trials and it consists of three main components: The RPC server for communication with the clients, a worker thread that is doing work dependent on the messages received by the server and both communicate through a layer of shared data. The server appends messages to a single queue, the worker takes messages in a first-in-first-out manner, does the work, and finally modifies shared data structures dependent
on the results. The next time the server is contacted by a client, it only performs look-ups on the modified shared data, therefore providing low latency responses to the clients.

For the executor side, Maggy functionality related code gets wrapped into a function with the user defined training function embedded in a while loop. This function also contains the server address and will be serialized and sent to the executors. Once the function gets called by the Spark task, it starts the client and a heartbeat thread, which is registering with the RPC server, subsequently it will start polling the server for a trial to evaluate and block until it gets one. Once it gets a trial, the user function is called with the parameters. When the user function finishes, the client sends the final metric of the training to the RPC server and the while loop goes back to the beginning.

Figure 4.5: High-level overview of the Maggy architecture and components. Arrows indicate communication directions.
4.4.2 Driver-side

Since the Spark job blocks the main thread until it returns, the ExperimentDriver starts two actors, the worker thread and the server listener thread. Runtime diagram A.3 in appendix A.2 shows the main steps executed on the driver side when an experiment is set up until the communication protocol starts.

Data structures

There are three important in-memory data structures, that the driver side actors mainly operate on:

Reservations:
The server keeps a thread safe Reservations object that is shared with the worker thread to map Spark executors (partitions to be specific) to trial identifiers. When an executor task registers with the server, the server creates a so called reservation for the executor which contains information about the respective client’s host and port, partition id and trial id of the currently scheduled trial on this executor.

Trial store:
The trial store is a Python dictionary that maps trial ids to Trial objects. A Trial is a thread-safe object to keep all information related to one trial, such as the id, the hyperparameter configuration, status, if the trial should be stopped early, the history of the learning curve, the final optimization metric and the start and end time of evaluation.

Final store:
The final store is a simple Python list with all trials that were finalized. They are separated from the running trials, because they need to be passed separately to certain functions, e.g. early stopping and separating them each time would be inefficient. At the time they are moved from the trial store to the final store, trials are also serialized and written to HopsFS.

RPC Server

The RPC server extends a message socket class with receive and send method (appendix figure A.2). It is implemented as a simple TCP/IP web socket server with length prefixed pickle messages. The messages are standard Python dictionaries. The server is multiplexing to manage multiple client connections with a single listener thread. The server is
implemented in a non-blocking way, therefore sending a response to requests by clients with low response times.

When the server receives the request for a new trial, it only performs look-ups on the trial id in the corresponding reservation to get the assigned trial, if one is assigned. All messages get added to a message queue, in order to signal to the worker the work that should be done. For example, when a registration message is received, the worker will know that this executor is available to start work, so it has to assign a trial to that reservation. Furthermore, if the server receives a heartbeat with the current metric of a trial, it can perform a lookup on the corresponding Trial object in the trial store to check if it should be stopped early.

Worker

The worker thread takes one message at a time from the message queue and performs work depending on the type of the message. Table 4.1 summarizes the work to be done.

<table>
<thead>
<tr>
<th>Message Type</th>
<th>Action</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>METRIC</td>
<td>1. Get trial from store and append metric to history.</td>
<td>Numeric value</td>
</tr>
<tr>
<td>BLACK</td>
<td>1. Get trial from store and reschedule</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>1. Get trial from store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Set FINALIZE status</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Record finish time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Move trial to final store and remove from trial store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Serialize and write to HopsFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Get new trial from optimizer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IF trial returned:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Assign trial to idle reservation and add to trial store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELSE:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Set experiment_done flag to end experiment</td>
<td></td>
</tr>
<tr>
<td>FINAL</td>
<td>1. Get new trial from optimizer</td>
<td>Numeric value</td>
</tr>
<tr>
<td></td>
<td>IF trial returned:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Assign trial to idle reservation and add to trial store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELSE:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Set experiment_done flag to end experiment</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>1. Get new trial from optimizer</td>
<td>Reservation dictionary</td>
</tr>
<tr>
<td></td>
<td>IF trial returned:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Assign trial to idle reservation and add to trial store</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELSE:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.1 Set experiment_done flag to end experiment</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.1: The different message types and the actions that need to be performed by the worker in response.
Additionally, the worker keeps track of the time passed and checks for early stopping in the specified early stopping interval, that is specified when launching the experiment. It does so by calling the static method `earlystop_check` of the early stopping rule used in the experiment. If the method returns trials to be stopped, the worker sets a stopping flag in the Trial object, which will be read by the server, the next time it receives a heartbeat related to that trial.

4.4.3 Executor-side

For the executor-side everything has to be wrapped into a function to be executed as map function on the executors for each partition. A partition, as we mentioned earlier, is a simple integer from 0, 1, \(\ldots \), \(N \) where \(N \) is the number of executors. The `trialexecutor` module of MAGGY contains a `_prepare_func` method, a higher order function, which returns the function that is to be passed to the executors. The code snippet below shows the arguments needed to set up the MAGGY functionality inside the Spark tasks:

```python
nodeRDD = sc.parallelize(range(num_executors), num_executors)
...
nodeRDD.foreachPartition(trialexecutor._prepare_func(app_id,
    run_id, map_fun, server_addr, hb_interval,
    exp_driver._secret, app_dir))
```

Listing 4.6: Starting a Spark task with MAGGY.

The *ids* are necessary in order to find the logging directories in HopsFS, *map_fun* is the training function defined by the user, *exp_driver._secret* is a secret token to verify messages, *server_addr* is the host and port of the server, *hb_interval* is the specified interval for the heartbeat messages and *app_dir* is the root directory of the application in HopsFS.

RPC Client

The RPC client implements the same message socket as the RPC server (appendix figure A.2 for a class diagram). When the wrapper function gets called by the Spark task, the first thing that is set up is the client. It sends a registration request with its reservation to the server and if it was successful, the heartbeat thread is started. Subsequently, the wrapper function enters a while loop, at the beginning of which the client starts to poll the server for trials, either it receives a trial or it continues polling until it receives a message to end the experiment and exit the loop.
In order to send heartbeats with the current training metric to the server, the client needs to be able to access the metric. However, the user function only returns the metric at the very end, therefore, the \textit{reporter} abstraction was introduced. The user is forced to include the \textit{reporter} in the training function signature and call \texttt{reporter.broadcast(metric)} in his training loop to use early stopping. The \textit{reporter} is a thread-safe object, that is written to by the user function by calling its \textit{broadcast} method and the heartbeat thread subsequently reads from it. The \textit{reporter} is also responsible for early stopping the training. When \textit{broadcast} is called, it checks for a stopping flag in the \textit{reporter}, if the flag is true, the function throws a custom \textit{EarlyStopException}, therefore killing the function training. The exception is caught and the client sends the last metric to the server, notifying it that this trial has terminated.

4.4.4 Communication

The RPC component is responsible for communication between the experiment driver and the trial executors. A custom web socket server and client was implemented due to the flexibility to extend the protocol. An alternative could have been the gRPC framework \footnote{https://grpc.io}, however, at the beginning the protocol was still changing frequently and gRPC requires to generate code everytime a change is made, and hence would have been impractical for development. Furthermore, gRPC uses Protocol Buffers\footnote{https://developers.google.com/protocol-buffers/} to serialize data, which need to be defined separately, using simple Python dictionaries was the more practical approach. However, the replacement with the gRPC is on the future work list, because it will allow to integrate MAGGY easily with existing Hopsworks security mechanisms.

Figure 4.6 shows the communication within the system. This section focuses on the two components on the right. When the MAGGY server starts, the \textit{ExperimentDriver} registers the server address (host and port) as well as the secret token through the Hopsworks REST API with Hopsworks. This is done, to make MAGGY discoverable by other services, as will be discussed in section 4.4.5. As mentioned before, the messages are length-prefixed pickled dictionaries of the format shown in listing 4.7.
Listing 4.7: Maggy message format.

Figure 4.6: RPC communication within Maggy, with the server in the middle and the two clients sending requests to the left and right.

Table 4.2: Client to server communication protocol.

Table 4.2 describes the message protocol. Every communication starts with a request initiated by a client. There are four possible response message types by the server: OK, STOP, ERR or GSTOP. The OK message acknowledges that the message was received correctly and contain further information as specified in the table, while a ERR response closes the socket connection due to a malformed message. Heartbeat messages are indicated by the
METRIC type and can receive a STOP response, which indicates that the trial is to be stopped early. Consequently, the client sets the stopping flag in the reporter. The GET request either receives an OK response with no data, notifying that the client should continue polling for a trial until he receives a TRIAL response with a hyperparameter configuration dictionary as data or a GSTOP response which indicates to terminate the experiment. As a result of the GSTOP message, the client shuts down the heartbeat thread and ends the Spark task. METRIC heartbeat messages and FINAL messages can additionally contain logs from the executor (section 4.4.5).

4.4.5 Logging

Most Hopsworks customers and data scientists in general use Jupyter\(^{11}\) notebooks to run their model training. On Hopsworks, Jupyter is using a Sparkmagic PySpark kernel\(^{12}\) to execute Spark jobs. Sparkmagic is a library that enables working with a remote Spark cluster through a REST API, such as Livy\(^{13}\). This unfortunately means that once a job is submitted to the remote Spark cluster, no logs are propagated back to Jupyter until the job finishes. This has a big disadvantage from a user experience perspective. The user does not get any feedback about the job progress inside the Jupyter notebook until the job returns. Instead, the user would need to go to the Spark UI and open the executor logs.

![Figure 4.7: Screenshot of the progress information and logging in Jupyter, enabled by the Maggy RPC framework.](image)

With the Maggy RPC framework in place, its functionality can be leveraged to aggregate logs inside the driver. Therefore, the clients can include logs in their messages. The Maggy server collects them and writes them to HopsFS. However, the driver is not running in the same environment as Jupyter and Sparkmagic. Therefore, clients can connect to the server and start requesting logs. For this, the server reacts to a special LOGS request, upon which the server answers with the accumulated logs and statistics about the job, such as current best metric, trials finished or number of early stopped trials. To establish a

\(^{11}\)Jupyter Project https://jupyter.org

\(^{12}\)Hopsworks fork of Sparkmagic https://github.com/logicalclocks/sparkmagic

\(^{13}\)Apache Livy https://livy.apache.org
connection to the server, the host and port are necessary. This is why the **Maggy ExperimentDriver** registers the server address and the secret token with Hopsworks. A client can then be set up within Jupyter to query logs and print them underneath the Jupyter cell. To establish the connection, the client first requests the **Maggy** server information from Hopsworks.

In order to make logging seem as pythonic as possible for the user, the Spark executors use a special `print` function, that does not only print to the executor’s stderr but also tells the client to send the content of the `print` to the **Maggy** server. In Jupyter the logs are printed with a prefix to indicate from which executor the prints are coming. See figure 4.7 for an example of the user experience when a **Maggy** experiment is run.

4.5 Failure assumptions and behaviour

4.5.1 Executor failure

In case of executor failure there are two possible scenarios:

1. Assuming that there are many executors training models simultaneously, one would not want to stop the entire experiment and restart from a checkpoint, but rather only restart the corrupted executor and providing it with a new suggestion as soon as it re-registers with the experiment driver.

2. From version 2.4 Spark introduced the so called Barrier Execution Mode which is a new scheduling strategy allowing for better failure support for distributed computations. Barrier Execution works like gang scheduling. All tasks in a barrier stage are started at the same time. Furthermore, in this mode if one executor fails, all tasks in the barrier stage are restarted. With this mode one would need to restore the current state of the experiment from a checkpoint and then restart all executors.

Option number one is the more efficient option in this case and also reduces complexity, since it is not needed to restore the entire experiment from a checkpoint. Instead, Spark is going to restart the single task, which will register with the experiment driver again, getting new work.

In order to guarantee this behaviour, the following Spark properties\(^\text{14}\) have to be set accordingly:

\(^{14}\text{https://spark.apache.org/docs/latest/configuration.html}\)
spark.blacklist.enabled=true
Blacklisting of executors must be enabled. That means after too many task failures on an executor, no new trials are scheduled by Spark on that executor anymore. The conditions for blacklisting get defined with the following settings.

spark.blacklist.application.maxFailedExecutorsPerNode=2
The entire node gets blacklisted for an application after two different executors got blacklisted. Since dynamic allocation is used for Maggy applications, the executors on the node may get marked as idle and be claimed back by the cluster manager. Therefore, allowing the application to restart new executors on the previously blacklisted node.

spark.blacklist.application.maxFailedTasksPerExecutor=1
It is enough for one task to fail on an executor, for the executor to be blacklisted for the entire application. However, the task is being attempted multiple times, as specified below. As with blacklisted nodes, the blacklisted executor can get marked as idle and be claimed back by the cluster manager.

spark.blacklist.stage.maxFailedExecutorsPerNode=2
spark.blacklist.stage.maxFailedTasksPerExecutor=1
These should be the same as the settings above on application level, since all Maggy jobs contain only a single stage.

spark.blacklist.task.maxTaskAttemptsPerExecutor=2
A specific task is being retried two times on the same executor, before the executor is blacklisted for that specific task. Because of the settings above, this also leads to a blacklisting of the executor for the entire application.

spark.blacklist.task.maxTaskAttemptsPerNode=3
A task can be retried three times on the entire node, therefore once it failed twice on one executor, it is attempted on additional time on a different executor.

spark.blacklist.killBlacklistedExecutors=true
Blacklisted executors are being killed and reclaimed by the resource manager, such that completely new executors can be started for the application.

spark.task.maxFailures=4
Total number of failures of a particular task that are tolerated before suspending the entire job. The total number of failures spread across different tasks will not lead to job failure. This needs to be larger than spark.blacklist.task.maxTaskAttemptsPerNode for spark to be robust against one unhealthy node.

spark.blacklist.timeout=60min
A node or executor is unconditionally removed from the blacklist of the application after
one hour in order to attempt running new tasks. However, with dynamic allocation, the executors are killed and reclaimed by the resource manager before.

With these settings, three possible reasons for failure can handled correctly:

1. Error in user code. This will lead all tasks to fail all attempts and therefore correctly stopping the job due to the *maxFailure* setting.

2. Failure of executor, due to an hardware or software error outside of Maggy. The executor will be restarted (if possible) by the Spark failure mechanisms, and subsequently re-registers with Maggy to get a new trial. If a trial was running at time of failure, progress is lost, but it will be retried by Maggy either on the same executor or a different one.

3. Failure of a trial due to a malformed hyperparameter combination. It can happen that certain hyperparameters lead to errors because, for example, the model is to big and the executor runs out of memory. Since trials are independent of Spark tasks, these trials lead to the failure of the task first and hence the task restarts to get a new trial. The trial in question will be retried either on the same or on a different executor, however, if it fails too often, it gets discarded by Maggy itself.

4.5.2 Driver failure

Handling driver failure is not yet supported by Maggy because it always requires the user to restart the experiment in the Jupyter notebook manually. However, the scenario was taken into account for the design of Maggy so that the foundation is available. All finalized trials get serialized and written to persistent storage (HopsFS) and can therefore be read at the start of an experiment to reproduce the previous state. The finalized trials should contain all information needed to reproduce the state of the optimizer. Alternatively the state of the optimizer can be written to HopsFS, too, the *initialize* hook of the optimizer can then be used to read the state and re-initialize. The early stopping component is stateless, meaning it is always passed the full state of the experiment (the running and finalized trials) to it when being called.

4.6 Security

One assumption for the security of the system is made:
Assumption: The user of Maggy uses Spark with encryption mode enabled, such that tasks and jobs submitted to the executors are transferred with encryption.

The Maggy experiment driver then submits a one time secret token with the training function to the Spark executors. Due to our assumption, this token will be transferred securely. The token will be used by the RPC clients to authenticate themselves to the Maggy experiment driver. This level of security ensures that no counter party can attack the Maggy driver with DDoS attacks, where a malicious user tries to overload a server with a large amount of messages. The messages themselves do not contain sensitive content and are therefore not endangering data privacy.

4.7 Testing

The testing of the system has to be split in two parts:

1. Unit tests can be performed for classes which are independent of Spark and Hopsworks, which are the Searchspace, Trial, Reporter, Optimizer and EarlyStopping Classes.

2. System and integration testing could be performed up to a certain point during development, when Maggy was usable on any Spark cluster, without Hopsworks. This was used to test the main components of the RPC framework on a Spark cluster ran locally in standalone mode, that is, without YARN but using the internal Spark resource manager. The test cases for this are Maggy jobs that implement certain characteristics. Usually those are simple for loops instead of expensive model training that mimic for example certain early stopping characteristics, according to the scenarios defined in 4.1.1. However, once Maggy was integrated with Hopsworks it is difficult to run automated tests, because a lot of steps of running a Maggy require interaction through the user interface and mocking all Hopsworks or Spark related functionality would be tedious. This is a point on the future work list.
Chapter 5

Results and Analysis

This chapter is concerned with the third deliverable defined in section 3.1. The evaluation of the research hypothesis. To answer this, empirical experiments were conducted. Additionally, observations about the behaviour of the system during the experiments are made, in order to validate its functionality.

5.1 Experiments

At the time of writing, MAGGY supports two optimizers, a simple random-search approach [29] and the adaptive configuration selection algorithm ASHA [44]. Additionally, the median stopping rule was implemented for early stopping. Random-search is used in conjunction with the median stopping rule to validate the research hypothesis on two tasks: 1. Hyperparameter optimization of a convolutional neural network (CNN) for image classification. 2. A small CNN architecture search task. Additionally, ASHA is compared to random-search with early stopping on these two tasks, in order to investigate if the directed nature of ASHA yields benefits over the un-directed random-search, but with additional early stopping.
5.1.1 Experimental Setup

Data

The CIFAR-10 dataset [55] was used throughout all experiments. The dataset consists of 60,000 32x32 colour images with 10 classes, with 6,000 images per class. And it is split into 50,000 training images and 10,000 validation images. This is a common dataset and is widely used in research and in most Auto-ML related articles that were presented in the background section, e.g. [8] [33] [44] [43]. A test set for the final evaluation of the model is not used since a test set should never be used for hyperparameter tuning. This dataset poses a high enough computational challenge because it requires deep neural networks to achieve good accuracies.

Environment

The experiments are run on a single node Google Cloud instance with 68GB memory, 22 vCores and 4 NVIDIA Tesla P100 GPUs with 16GB memory each. The node is running Hopsworks 0.10.0 with Apache Spark 2.4.0.1 and MAGGY 0.2.2. Therefore, experiments can be run with four concurrent workers/executors with one vCore and with one GPU each. Each executor and also the driver gets allocated 8GB of memory. The neural networks are implemented with the Keras API of TensorFlow version 1.11.01.

To make results comparable, for each of the following three experiments, a maximum compute time on the four executors was set as a resource. That means, per experiment each searcher was run for a limited time. The time was determined by running first the ASHA optimizer and subsequently running random-search with and without early stopping for the same amount of time. Since the optimizers are based on randomness, each of the experiments is rerun three times and the averages are reported. Due to the high computational cost of these experiments, especially the GPUs, more repetitions were not possible. However, this shows once again how important efficient optimization techniques are.

5.1.2 Hyperparameter Optimization Task

The first experiment conducted is a hyperparameter tuning task. The experimental design of Li et al. [8] for CIFAR-10 was used, which they adopted from Snoek, Larochelle, and

1https://www.tensorflow.org/versions/r1.11/api_docs/python/tf/keras
Adams [33]. They utilized the cuda-convnet architecture \(^2\) of Alex Krizhevsky, with a 18% test error and a few minor changes. The network is a three-layer convolutional architecture followed by a fully connected layer, which originally uses local response normalization, but was replaced with batch normalization in our experiments. A batch size of 128 and stochastic gradient descent (SGD) was used for all runs of the experiment. The number of epochs is used as resource for ASHA. We are optimizing validation accuracy and update the validation accuracy to be broadcast to the experiment driver after every epoch.

Search Space:

The search space for this experiment is defined in table 5.1. It is the same search space as used by Li et al. [8], only that the parameters related to the local response normalization were omitted, due to the usage of batch normalization. The learning rate reductions refer to a step decay of the learning rate, that is, the number of times the learning rate got reduced by a factor of 10 over the entire training period in equally long intervals.

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Scale</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Learning Rate</td>
<td>log</td>
<td>(5 \times 10^{-5})</td>
<td>5</td>
</tr>
<tr>
<td>Conv1 (l_2) Penalty</td>
<td>log</td>
<td>(5 \times 10^{-5})</td>
<td>5</td>
</tr>
<tr>
<td>Conv2 (l_2) Penalty</td>
<td>log</td>
<td>(5 \times 10^{-5})</td>
<td>5</td>
</tr>
<tr>
<td>Conv3 (l_2) Penalty</td>
<td>log</td>
<td>(5 \times 10^{-5})</td>
<td>5</td>
</tr>
<tr>
<td>FC4 (l_2) Penalty</td>
<td>log</td>
<td>(5 \times 10^{-3})</td>
<td>500</td>
</tr>
<tr>
<td>Learning Rate Reductions</td>
<td>integer</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 5.1: Search space for the hyperparameter optimization task.

Computational Considerations

ASHA is an adaptive resource allocation algorithm and therefore to ensure comparability to random-search, we set the time constraint as described above. However, it still needs to be decided on the resource used for one trial in random-search. Preliminary, qualitative analysis has shown that 64 epochs are sufficient to differentiate between the configurations in the given search task. In fact, as described before, given a time constraint, the number of epochs used for random-search poses an exploration - robustness trade-off, that means, choosing a lower number of resources one is able to evaluate more trials and therefore explore the search space more. But the result might not be the most robust since a trial can perform badly in the beginning and only gain performance towards the end of training. As

\(^2\)The architecture specification is available at https://code.google.com/archive/p/cuda-convnet/
a general observation, if the configurations produce models which are very close together
with respect to performance, a longer training time should be chosen, while for search
tasks with high sensitivity of the models to the hyperparameters, a lower number might be
sufficient and can lead to superior results due to more exploration.

<table>
<thead>
<tr>
<th>Rung i</th>
<th>Number Trials n_i</th>
<th>Resource per Trial r_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>256</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>256</td>
</tr>
</tbody>
</table>

Table 5.2: Hyperparameter optimisation task: Resource allocation for SHA

Due to the observations above, the following settings were chosen. Each trial of the two
random-search optimizers is run with a maximum of 64 epochs. ASHA starts with a min-
imum resource of one epoch and ends with a maximum resource of 256 epochs and a
reduction factor of $\eta = 4$, that is, the top quarter of each rung is promoted. The resource
allocation of the synchronous successive halving algorithm (SHA) with the same config-
uration is shown in table 5.2. The number of trials in each rung of SHA can be used as an
indication for ASHA, but because ASHA is run asynchronously, it will continue explor-
ing and adding trials to the bottom rung if a worker is otherwise idle. Subsequently, it can
continuously promote trials to the next rung, therefore being able to evaluate more trials
in each rung.

Concerning, random-search with the median early stopping, running trials are checked
for early stopping every five seconds and the heartbeat interval is also set to five seconds.
Checking for early stopping more frequent than the optimization metric would be ineffi-
cient. Furthermore, early stopping is only started once at least 5 trials have finished training
entirely, to have a good baseline for comparison.

Results

Table 5.3 shows the average results over the three repeated runs of each optimizer. The total
duration of each of the runs for ASHA was fairly constant and varied by only 3 minutes
around 156 minutes, hence, 160 minutes were chosen as the maximum amount of resource
on the above described cluster for all the following runs of the other two optimizers. The
duration of random-search is slightly shorter, because at 155 minutes the last trial finished
training, while the following ones finished only after the 160 minutes resource limit.
At the end of the entire runtime of the experiment, ASHA returned best performing hyperparameter configurations with an average accuracy of 81.36%. Which is comparable to the model found by the Hyperband method of Li et al. [8], who report an approximate accuracy of 21%. However, they only report the results in relation to epochs trained and not in relation to time, which can vary depending on the infrastructure used. Nevertheless, it can be seen that both asynchronous methods, ASHA and random-search with the median stopping rule (RS-ES) find competitive configurations. Only random-search without early stopping (RS-NS) cannot find a competitive configuration with an average accuracy of 77.5%.

The previous observation is not surprising, looking at the number of trials that were considered by each of the methods, RS-NS trained only 36 models, however, each of them for 64 epochs. On the other hand, ASHA considered 442 trials with an average duration of only about one minute. It should be noted that ASHA did not early stop trials, but instead has the adaptive resource allocation. Surprisingly, all three runs of ASHA evaluated exactly the same number of trials and took about the same time. The same holds for RS-NS, which was able to evaluate 36 trials in all three runs. One would have expected that different hyperparameter configurations lead to varying training speeds. However, it could be seen that due to the simplicity and small size of the neural network in comparison to the high computational power of the GPUs, every epoch took about the same time. That means, training time was independent of the configuration and only dependent on the amount of data, which was the same in all three runs. Monitoring the GPU utilization during the experiments substantiated this observation, as the GPUs barely got over 30% utilization.

Table 5.2 shows that synchronous successive halving would have considered only 346 trials, ASHA improved over that with 442, that is an increase of about 27% even with only four workers - an effect that will be amplified with more workers. RS-ES considered on average 120 trials, of which on average 90 were stopped early, with large standard deviations across the three runs. This poses a considerable speedup with respect to the amount of trials considered, that is the exploration of the search space. It can be seen from the large standard deviation of the duration of the trials in RS-ES that most trials were stopped very early in the training process, thus, being in line with our hypothesis. Overall, the large variance in the duration of trials in the asynchronous algorithms together with the superior performance justifies the need for platform support of asynchronous HPO algorithms.

Figure 5.1 shows the average accuracies tracked over the runtime of the experiment. It can be seen that ASHA finds good configurations already early during the experiment, showing its superiority and the importance of exploration of the search space. The vertical
<table>
<thead>
<tr>
<th>Optimizer</th>
<th>Runs</th>
<th>Total Duration</th>
<th>Best Accuracy (Std)</th>
<th>Trials (Std)</th>
<th>Trials Stopped (Std)</th>
<th>Trial Duration (Std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHA</td>
<td>3</td>
<td>156</td>
<td>0.8136 (0.02)</td>
<td>442 (0.0)</td>
<td>0 (0.0)</td>
<td>0.98 (3.53)</td>
</tr>
<tr>
<td>Random-search with Median Stopping (RS-ES)</td>
<td>3</td>
<td>160</td>
<td>0.7958 (0.01)</td>
<td>120 (60.7)</td>
<td>90 (65.3)</td>
<td>5.18 (7.28)</td>
</tr>
<tr>
<td>Random-search with No Stopping (RS-NS)</td>
<td>3</td>
<td>155</td>
<td>0.7747 (0.04)</td>
<td>36 (0.0)</td>
<td>0 (0.0)</td>
<td>17.22 (0.04)</td>
</tr>
</tbody>
</table>

Table 5.3: Hyperparameter optimization task: Average results over three repeated runs per optimizer with standard deviations in parentheses.

line indicates the point when ASHA decided on its final configuration. The larger gaps in accuracy at this point between the methods make its superiority more clear. From that point on it only trains the single last model with 256 epochs. So actually, it finds the best configuration already after 76 minutes and therefore achieves a 2x speedup to the other two methods. In fact, ASHA finds the best configuration and returns a fully trained (256 epochs) model, while the other two return only models trained for 64 epochs and would need another 256 epochs to train the full best model.

![Cuda Conv Net](image)

Figure 5.1: Hyperparameter optimization task: Average best accuracy over three repeated runs per optimizer tracked over the runtime of the experiment with the cuda-convnet architecture.

Comparing RS-ES and RS-NS it should be noted, that RS-NS finds better configurations early in the experiment. This could be an indicator, that the early stopping method actually stops some configurations which might have improved their accuracy rather late during the training process. However, as noted before, RS-NS fails to find a overall competitive configuration. We extended the duration of RS-NS and found that it finds competitive configurations only after around twice the amount of time, so more than five hours.
5.1.3 Neural Architecture Search Task

To pose a computationally more challenging task, the second experiment conducted was a neural architecture search task. We are tuning the architecture of a small convolutional neural network. For that an approach is adopted, that is also adopted for state-of-the-art NAS: Data scientists define a micro architecture of so called "cells" and subsequently the architecture is tuned by finding the number of cells in sequence and tuning the hyperparameters of the cell. The search space is defined in detail below. As in the previous experiment, a batch size of 128 and SGD was used for all runs and the number of epochs is used as resource for ASHA. The validation accuracy is updated and broadcast to the experiment driver after every epoch for early stopping and optimization.

Search Space

The network consists of at least one and maximum three sequential convolutional cells, followed by one last fully connected layer and dropout before the soft-max output layer. Except for the output and the pooling layers, all layers use a rectified linear unit (ReLU) as activation function. The number of neurons in the fully connected layer is made a hyperparameter as well as the dropout rate applied to it. The convolutional cells are structured beginning with one to three sequential convolutional layers, followed by either a maximum or average pooling layer. The number of filters in the convolutional layers is a hyperparameter, and if there is more than one cell, the last cell will have double the amount of filters. Finally, to each cell dropout is applied. There are two more overall hyperparameters, that are the initial learning rate and a constant decay factor. This experiment design was in part adapted from the “small CNN architecture tuning task” of Li et al. [44], however, there specification is not complete. A discussion of the original ASHA experiment can be found in the appendix. The feasible intervals and values for the hyperparameters are shown in table 5.4.

Computational Considerations

The same resource allocation per trial as in the previous experiment is used for all optimizers. Furthermore, also the settings for early stopping are the same.
Table 5.4: Search space for the neural architecture search task.

![Image](image.png)

Results

The overall results for the neural architecture search task are summarized in table 5.5. The first observation that can be made, are the overall high accuracies above 80% for all three optimizer. This indicates that all the models perform well and are not as sensitive to the hyperparameter configurations, as the cuda-convnet model in the previous experiment. Convolutional neural networks with pooling layers and dropout are known to perform well on image recognition tasks and CIFAR-10 is not the most complex learning task. Moreover, the structure of the previously defined architecture cells are a common approach and therefore the good performance is not surprising. However, this makes the task about finding small deviations in architecture that are hard to be discovered by humans. The good quality of the models gets apparent, too, when we look at the standard deviation of the amount of early stopped trials. The standard deviation is here only 13.86 compared to 65.3 in the previous task. Hence, the median rule is consistently stopping between 70% and 90% trials, indicating more stable model performances. Because of the fewer stopped trials, RS-ES can evaluate only 107 trials. Interestingly, ASHA is still able to evaluate 441 trials, only one less than before, indicating that even though the NAS models’ architectures are larger in terms of parameters to be learned, the computational complexity of the training is still not having an impact on the training time per trial. The GPUs are fast enough to cover the variances in architecture size.

Figure 5.2 plot the average accuracies of the best performing configurations over time. The four workers in the two random-search approaches each finalize the first set of trials after 17 minutes, and the four models already have an average performance of 74% for both approaches, this confirms again that model accuracy is overall high on the given task. Again the grey vertical line indicates the point until ASHA trained no model with more than 64 epochs. The training of the final model of ASHA with 256 epochs took about 70 hours.

![Image](image.png)
Table 5.5: Neural architecture search task: Average results over three repeated runs per optimizer with standard deviations in parentheses.

<table>
<thead>
<tr>
<th>Optimizer</th>
<th>Runs</th>
<th>Mean Duration</th>
<th>Best Accuracy (Std)</th>
<th>Trials (Std)</th>
<th>Trials Stopped (Std)</th>
<th>Trial Duration (Std)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASHA</td>
<td>3</td>
<td>156</td>
<td>0.8495 (0.02)</td>
<td>441 (0.0)</td>
<td>0 (0.0)</td>
<td>0.98 (3.54)</td>
</tr>
<tr>
<td>Random-search</td>
<td>3</td>
<td>158</td>
<td>0.8153 (0.04)</td>
<td>107 (13.86)</td>
<td>81 (13.08)</td>
<td>5.75 (7.39)</td>
</tr>
<tr>
<td>Median Stopping (RS-ES)</td>
<td>3</td>
<td>158</td>
<td>0.8189 (0.01)</td>
<td>36 (0.0)</td>
<td>0 (0.0)</td>
<td>17.20 (0.18)</td>
</tr>
<tr>
<td>Random-search</td>
<td>3</td>
<td>156</td>
<td>0.8189 (0.01)</td>
<td>36 (0.0)</td>
<td>0 (0.0)</td>
<td>17.20 (0.18)</td>
</tr>
</tbody>
</table>

minutes, and only produced a minor gain in accuracy. This shows, that the models could be trained with less epochs during search, therefore, favouring exploration, for potentially better results.

Again, it can be observed that RS-ES performs worse compared to RS-NS around the middle of the runtime, indicating that the stopping heuristic makes some mistakes and stops good models. However, it catches up with RS-NS and the final accuracies differ by only 0.3%.

Figure 5.2: Neural architecture search task: Average best accuracy over three repeated runs per optimizer, tracked over the runtime of the experiment.

5.2 Validation and Discussion

CIFAR-10 is a popular dataset and state-of-the-art models nowadays achieve much better performance than what is found in the previous two empirical evaluations. The main
difference in performance attributable to more complex models with deeper architectures and data manipulation to artificially increase the size of the dataset. Li et al. [8] argue, that if you limit the comparison to the best human expert result and the same architecture (cuda-convnet), the best test error is 18% and optimized 15% [33]. Considering, that we used a slightly altered search space and architecture with batch normalization, the results are reasonable. One has to note, too, that the experiments were also conducted with less resources. Li et al. [8] train their models for 75 epochs.

It was observed multiple times in the results above, that the duration of trials seems to be deterministic because ASHA and random-search without early stopping consistently evaluated the same amount of trials across the three repetitions of the search. We gave a possible explanation for this phenomenon, that due to the computational power of the GPUs, the training time is independent of the hyperparameter configuration or architecture. A first suspicion was, that the process might not be truly random, but sanity checks were conducted to ensure that configurations are sampled randomly from the search space. At no point were random seeds being set during the experiments. For an example, where the hyperparameter configurations influence training time, the reader is being refered to the additional experiment in appendix B.1.

System Design

The constant run times, mentioned in the paragraph, above approve the design of the Maggy architecture. The Maggy server can easily handle heartbeats with one second intervals from multiple workers and does not slow down the trials due to the non blocking communication protocol.

During the execution of very long experiments, an issue with the GPUs occurred. The GPUs were causing out-of-memory exceptions in an undeterministic manner. The problem was in the memory allocation on the GPU by TensorFlow. By default, TensorFlow claims almost all memory on GPUs, in order to reduce issues with memory fragmentation. The memory allocation only gets released when the host Python process, that started the TensorFlow backend, gets stopped. Since we are training models in serial from the same Python process, TensorFlow was accumulating garbage on the GPUs’ memory, eventually causing the out-of-memory errors. This happened despite the small size of the models. There were two remedies to this issue. The first would be a hard reset of the GPUs’ memory by a subprocess through the NVIDIA System Management Interface.

3More details at https://www.tensorflow.org/guide/using_gpu#allowing_gpu_memory_growth
which provides a command line interface to the management of NVIDIA GPUs. The second possibility was to close the TensorFlow session and to reset the TensorFlow default graph subsequently. The second option allows to finally perform garbage collection. Since Hopsworks provides support for AMD GPUs, the first option was not universal, because it is specific to NVIDIA. Hence, the second option was chosen. The process of doing these operations can be hidden from the user by placing them in the RPC client of MAGGY, calling them before every new trial.

It was described in section 4.4, that MAGGY keeps the state of all trials in memory throughout the runtime of an experiment even though it writes them to HopsFS. This could become a problem memory bottleneck on the Spark driver for long experiments with many trials. For that reason, it was tried to estimate the size of the state of a trial. It is known, that it is not straight forward to determine the in-memory size of a custom Python object\(^5\). One of the reasons for that being that Python works with references to other objects inside Python standard objects like lists or dictionaries. Furthermore, lists for example always reserve more space in memory than necessary. As a quick estimate, an approach was chosen that gets often proposed for Python. For that the object simply gets pickled, that is, serialized and subsequently the length of pickle object is measured. It was found that for the experiments conducted, the trials varied from a size of 0.3KB to 0.6KB, depending on the length of the history for the learning curve. This shows that the trial size should not become an issue, which could also be seen when the memory consumption on the driver was monitored during experiments.

\(^5\)For more details:
Chapter 6

Conclusion

Coming back to the problem description introduced in section 1.2, the first identified problem was the algorithmic side of hyperparameter optimization. The literature review showed, that asynchronous algorithms exist, for example Bayesian Optimization, ASHA or Hyperband. Furthermore, methods to increase performance evaluation efficiency such as early stopping can additionally be used to create additional asynchronism, measured in the variance in trial duration. The literature suggests that directed algorithms outperform un-directed approaches such as random and grid-search on most learning tasks. Moreover, state-of-the-art algorithms such as ASHA can often be operated asynchronously, therefore, substantiating our claim that there is a need for system support of asynchronous optimization methods.

This brings us to the second dimension of the problem. Apache Spark is widely adopted and to avoid additional administration overhead for a new system, we wanted to be able to leverage the scheduling and fault-tolerance capabilities of Spark. However, Spark’s execution model is inherently synchronous and constrained by limited possibilities for communication between worker nodes. Especially for distributed deep learning, this poses a mismatch, because complete coordination and communication between executors is needed. We circumvented this shortcoming with a light-weight RPC framework and we have shown that it is possible to implement a scalable, asynchronous, distributed system for hyperparameter optimization in this way, based on Apache Spark. We decided to release this project as open-source, in order to allow users to implement their own algorithms and hopefully become active contributors to the project. There are many open-source solutions that try to solve the same or similar problems, however, fail to fulfil at least one of the goals defined in section 1.3. We have shown this on the example of Hyperopt, which has the same goal as MAGGY, but fails to provide a user friendly API for distributed exper-
items. It will be interesting to see, how the Hyperopt Spark integration will be adopted by the community and if MAGGY can compete with it.

To summarize the benefits of MAGGY, we can conclude that MAGGY not only fulfils the defined goals, but provides:

- Support for **asynchronous** optimization algorithms (random-search, ASHA)
- Support for **early stopping**
- **Robustness** against stragglers
- **Simple, notebook friendly** and **extendable** API

Additionally, if MAGGY is run on Hopsworks with underlying HopsFS as persistent storage, MAGGY provides:

- **Fault tolerance** with checkpointing of experiment state
- **Log aggregation** and realtime prints in Jupyter
- **Monitoring** with TensorBoard (HPrams plugin, introduction with TensorFlow version 2.0)

Finally, we can accept the research hypotheses. ASHA, as a state-of-the-art asynchronous algorithm with its built-in principled early stopping capabilities, consistently outperforms un-directed approaches without early stopping, that is random-search. A lot of research argues that on most learning tasks random-search is a baseline that is hard to beat [11] and indeed it is. Adding an early stopping rule such as the median stopping rule to random-search only increases the efficiency on specific learning tasks. Those tasks are the ones where the models are sensitive to hyperparameter combinations. For models which perform generally well, as we have shown in the NAS task, early stopping brings only limited benefits. However, it should be noted that the performance of these methods is greatly influenced by the resource allocated to the training of each model. By setting this resource, the expert can trade-off between exploration and the robustness of results. Generally, this depends on the resources required for the trials to sufficiently differentiate themselves in terms of generalization error. That is, if randomly selected hyperparameter combinations possess similar performance or when models converge slowly then one should work with larger per trial resources. On the other hand, if the generalization capability is revealed early during training, minimal resources per trial make sense in order to favour exploration. This observation is in accordance with the findings of Li et al. [8] for their Hyperband method, who conclude that the most explorative bracket of Hyperband is preferable in high-dimensional spaces and fast converging training procedures. Principled early stopping techniques such as ASHA avoid this “new” hyperparameter, therefore, giving it another advantage.
6.1 Future Work

Maggy is an open-source project and we will continue on extending and improving it. The future work to be done on Maggy should include:

1. Implementation of more optimizers and stopping rules such as Bayesian Optimization and learning curve prediction. In order to be competitive and generate a larger user base, more algorithms will be implemented for Maggy.

2. Fault-tolerance and warm starting of experiments. The state of the experiment is being checkpointed to persistent storage, however, since restarting an experiment is dependent on the initialization of the optimizer, there is still work to be done.

3. In principle Maggy can be used with any machine learning library. However, there might occur unforeseen issues, such as the TensorFlow GPU problem described earlier. It is planned to add tested support for PyTorch\(^1\) to Maggy.

4. Implement a standardized way of testing for Maggy. Due to its integration in existing systems, testing of Maggy is challenging and except for unit tests relies on test experiments at the moment. There should be a way to test Maggy in a simpler more standardized way. One way could be the setup of a test environment with Docker containers\(^2\).

On the algorithmic side of the problem, there are several approaches that should be evaluated. To the best of our knowledge, there are currently no experimental results about how ASHA performs when it is being combined with more directed sampling methods. ASHA as is, is still based on random sampling from the search space. Future work should explore this possibility. Moreover, the observation was made, that population based approaches can be run asynchronously if candidates are drawn from a population as needed instead of organizing the algorithm in generations. This algorithm showed good performance in a synchronous setting, so it is a good candidate for implementation on Maggy. Regarding early stopping methods, it should further be validated with more rules, for example the learning curve prediction, in order to see if it performs better on learning tasks where models are generally performing very similarly.

During the literature review and when we defined the experiments, it came to our attention that there is a lack of possibility to reproduce HPO and NAS experiments in a consistent manner. Many authors do not publish the code to their models and omit important details in the description of their approaches. For example, the inventors of ASHA do not fully

\(^{1}\)PyTorch Deep Learning Platform https://pytorch.org
\(^{2}\)Small execution environments: https://www.docker.com
specify their neural architecture and omit the resource allocation to methods other than their ASHA method. Efforts are needed here to make benchmarks reproducible, so that methods can reliably be compared. Maybe MAGGY can be leveraged for this purpose in the future.
Bibliography

Appendix A

Maggy Implementation Details

A.1 API Details

The goal of the experiment API for the user was to give the user the possibility to set all possible characteristics of the system, but at the same time to provide sensible defaults, so it can be used with minimal user input if desired. The experiment interface provides the following settings:

- **map_fun** (*function*) – User defined experiment containing the model training.
- **searchspace** (*Searchspace*) – A maggy Searchspace object from which samples are drawn.
- **optimizer** (*str, AbstractOptimizer*) – The optimizer is the part generating new trials.
- **direction** (*str*) – If set to ‘max’ the highest value returned will correspond to the best solution, if set to ‘min’ the opposite is true.
- **num_trials** (*int*) – the number of trials to evaluate given the search space, each containing a different hyperparameter combination
- **name** (*str*) – A user defined experiment identifier.
- **hb_interval** (*int, optional*) – The heartbeat interval in seconds from trial executor to experiment driver, defaults to 1
- **es_policy** (*str, optional*) – The earlistopping policy, defaults to ‘median’
• **es_interval** (*int*, optional) – Frequency interval in seconds to check currently running trials for early stopping, defaults to 300

• **es_min** (*int*, optional) – Minimum number of trials finalized before checking for early stopping, defaults to 10

• **description** (*str*, optional) – A longer description of the experiment.

A.2 Diagrams
Figure A.1: Class diagram of the driver side of MAGGY.
Figure A.2: Class diagram of the RPC server and client.
Figure A.3: Runtime of starting a Maggy experiment, showing how the different actors get set up and interact before the actual communication protocol begins.
Appendix B

Experiment Additions

B.1 ASHA Experiment

One of the goals for the experiments was to reproduce the "small CNN Architecture Tuning Task" experiment on CIFAR-10 of the ASHA paper [44], because it is considered state-of-the-art. However, the more the details of the experimental setup are being studied, the more inconsistencies and unclarities can be discovered. For example, they compare random-search to ASHA over a period of time, tracking the best test error. While ASHA adapts the resources for each trial (epochs in this case), random-search is usually performed with a fixed number of resources, but they do not disclose the number of epochs which is used for each trial in random-search. As was explained in the results section of this thesis, this is important information, because a small number of epochs would mean more exploration as

<table>
<thead>
<tr>
<th>Hyperparameter</th>
<th>Scale</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Learning Rate</td>
<td>log</td>
<td>10^{-5}</td>
<td>10</td>
</tr>
<tr>
<td>Batch Size</td>
<td>discrete</td>
<td>${2^6, 2^7, 2^8, 2^9}$</td>
<td></td>
</tr>
<tr>
<td>Number of Filters</td>
<td>discrete</td>
<td>${16, 32, 48, 64}$</td>
<td></td>
</tr>
<tr>
<td>Weight Init Std 1</td>
<td>log</td>
<td>10^{-4}</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>Weight Init Std 2</td>
<td>log</td>
<td>10^{-3}</td>
<td>1</td>
</tr>
<tr>
<td>Weight Init Std 3</td>
<td>log</td>
<td>10^{-3}</td>
<td>1</td>
</tr>
<tr>
<td>l₁ Penalty 1</td>
<td>log</td>
<td>10^{-5}</td>
<td>1</td>
</tr>
<tr>
<td>l₂ Penalty 2</td>
<td>log</td>
<td>10^{-5}</td>
<td>1</td>
</tr>
<tr>
<td>l₂ Penalty 3</td>
<td>log</td>
<td>10^{-3}</td>
<td>10^2</td>
</tr>
</tbody>
</table>

Table B.1: Search space for the "small CNN architecture tuning task" of Li et al. [44]
they can evaluate more trials in the same time, whereas a large number would lead to more robust results. Furthermore, the description of the neural architecture search task is very superficial. The definition of the search space can be found in appendix B.1. However, they omit important details such as the number of neurons in the fully connected layers. As it is common in research, we tried to reach out to the authors to clarify the details, but haven’t received responses until today.

The task was anyway reconstructed with the information available. Initial qualitative analysis of the model showed that it is very sensible to the choice of hyperparameters and most trials do not perform better than random, i.e. 10% accuracy. This is different in comparison to the experiments described in the main part of the thesis. Especially, the large learning rates of 10 and 1 let the model often even diverge, despite the learning rate reductions. Li et al. [44] compare ASHA against random-search in a sequential setting, so without distribution over a time frame of 2500 minutes. They find that random search ends with a best test error of around 25% while ASHA finds a best combination with test error around
20% and overall being twice as fast in finding a combination with 25% test error. However, without knowing the number of epochs used for random-search this result is not very strong. Since the models are so sensitive, a very low resource for random-search could have led to similar results, because it can be that ASHA just evaluated many more trials in the beginning. Therefore, we compared ASHA with distribution to random-search with early stopping, to investigate if early stopping can eliminate the speedup of ASHA compared to random search.

It can be observed, that in contrast to the previous experiments, for this search task, the model complexity influenced the time needed for one epoch. Hence, each run of ASHA manages to evaluate a different amount of trials, verifying the randomness of the approach. ASHA is also able to evaluate a magnitude of trials more than synchronous SHA, as we observed before. While ASHA reached the 75% accuracy in one run, on average the three runs only return a 70% best accuracy, which gets close to the 25% test error reported by Li et al. [44]. RS-ES can not compete on this example and returns only an 54% average accuracy after the runtime of the experiment. However, again looking at the point up to which the maximum resource used per trial is 64 epochs, ASHA also achieved only about 65% accuracy, still outperforming the other two optimizers. Since the model is sensitive to the hyperparameter configuration, RS-ES is able to outperform random-search without early stopping. This substantiates our observation, that early stopping is mainly beneficial in this case.

To summarize, we could not reproduce the results of the paper with the information given. In general, this example was added to show that instable models can lead to differing training times for the models, in contrast to the observations made in the small scale examples of section 5.1. An additional reason to add this discussion, was to show that reproducibility for Auto-ML experiments is a great issue and should be tackled with future work.
Glossary

Auto-ML Auto-ML attempts to construct machine learning programs (specified by E, T and P in the definition of machine learning), without human assistance and within limited computational budgets [12]. 7, 8

convolutional neural network Inspired by the human visual system’s structure, convolutional neural networks are a class of deep neural networks, mainly applied to computer vision tasks [17]. 53

deep learning Deep Learning is a field of machine learning using artificial neural networks. Deep learning usually refers to the application of neural networks with many hidden layers [3]. 1

hyperparameter In machine learning, a hyperparameter is a parameter whose value has to be set statically and can’t be learned by the training process. 1

machine learning A computer program is said to learn from experience E with respect to some classes of task T and performance measure P if its performance can improve with E on T measured by P [56]. 1

reinforcement learning Reinforcement learning models the problem of an agent that needs to adapt its behaviour to a dynamic environment. The agent learns behavior through trial-and-error interactions with the environment, getting a feedback at each iteration to update its strategy [39]. 18

remote procedure call Remote procedure call is a protocol that allows a program to execute a service of a program located on a computer in another address space over a network without having to implement network communication details. 23
supervised machine learning Learns an unknown function from known input-output pairs that maps inputs to outputs. 8
Acronyms

AI artificial intelligence. 1
API application programming interface. 4, 5, 22, 29, 32, 33, 38, 46, 48, 54, 64, 65, 73
ASHA Asynchronous Successive Halving Algorithm. 21, 31, 53–62, 64–67
CNN convolutional neural network. vii, viii, 53, 59, 78
DL deep learning. 1
FPGA Field-Programmable Gate Array. 2
GPU Graphics Processing Unit. 2, 3
HDFS Hadoop Distributed File System. 2
HPO hyperparameter optimization. 4, 7, 11–15, 34, 37, 57, 66
JVM Java Virtual Machine. 22
ML machine learning. 1, 8, 9, 13
NAS neural architecture search. 4, 7, 11, 16, 18, 59, 60, 65, 66
RPC remote procedure call. vii, 23, 37, 39, 41–43, 45–48, 52, 63, 64, 76
SGD Stochastic Gradient Descent. 55, 59
SHA Successive Halving Algorithm. viii, 56
TPU Tensor Processing Unit. 2

YARN Yet Another Resource Negotiator. 22