Mathematical description of the hydrodynamic regimes of an asymptotic model for two-phase flow arising in PFBC boilers.

Vicente Cuenca, Santiago de; Galiano, Gonzalo; Velasco, Julián y Arostegui, Jose Miguel (2010). Mathematical description of the hydrodynamic regimes of an asymptotic model for two-phase flow arising in PFBC boilers.. En: "20th International Conference on Fluidized Bed Combustion", 18/05/2009-20/05/2009, Xian, China. ISBN 978-3-642-02682-9.

Descripción

Título: Mathematical description of the hydrodynamic regimes of an asymptotic model for two-phase flow arising in PFBC boilers.
Autor/es:
  • Vicente Cuenca, Santiago de
  • Galiano, Gonzalo
  • Velasco, Julián
  • Arostegui, Jose Miguel
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 20th International Conference on Fluidized Bed Combustion
Fechas del Evento: 18/05/2009-20/05/2009
Lugar del Evento: Xian, China
Título del Libro: Proceedings of the 20th International Conference on Fluidized Bed Combustion
Fecha: 2010
ISBN: 978-3-642-02682-9
Materias:
Palabras Clave Informales: mathematical modeling, PFBC, two-phase flow, stability, bubbles
Escuela: E.T.S.I. Minas (UPM) [antigua denominación]
Departamento: Matemática Aplicada y Métodos Informáticos [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (210kB) | Vista Previa

Resumen

Two-phase systems where a dense phase of small particles is fluidized with a gas flow appear in many industrial applications, among which the fluidized bed combustors are probably the most important. A homogenization technique allows us to formulate the mathematical model in form of the compressible Navier-Stokes system type with some particularities: 1) the volumetric fraction of the dense phase (analogous to the density in the Navier-Stokes equations) may vanish, 2) the constitutive viscosity law may depend in a nonlinear form on this density, 3) the source term is nonlinear and coupled with state equations involving drag forces and hydrodynamic pressure, and 4) the state equation for the collision pressure of dense phase blows up for finite values of the density. We develop a rigorous theory for a special kind of solutions we call stationary clouds. Such solutions exist only under restrictions on the geometry of combustor and on the boundary conditions that usually meet in engineering applications. In return, these solutions have a stationary one-dimensional structure very simple and, from them, it is possible to reconstruct much of the dynamics of the whole system, responding to most of the practical issues of interest. Finally, we study the linear stability for the trivial solutions corresponding to uniform fluidized states injecting plane wave perturbations in our equations. Depending on the parameters of the equations of state describing the collisions between solid particles, hydrodynamic pressure, and the values of blowing boundary condition, we can draw detailed abacus separating stable regions of unstable regions where bubbles appear. Then, we use the dispersion relations of this multidimensional linearized model, combined with the stationary phase theorem, to approach the profiles and the evolution of the bubbles appearing in unstable regimes, and verify that the obtained results adjust to the observations.

Más información

ID de Registro: 5741
Identificador DC: http://oa.upm.es/5741/
Identificador OAI: oai:oa.upm.es:5741
URL Oficial: http://www.springerlink.com/content/w802416v1k6361h3/
Depositado por: Memoria Investigacion
Depositado el: 19 Ene 2011 09:53
Ultima Modificación: 20 Abr 2016 14:28
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM