Weakly Nonuniform Thermal Effects in a Porous Catalyst: Asymptotic Models and Local Nonlinear Stability of the Steady States.

Mancebo, Francisco J. y Vega de Prada, José Manuel (1992). Weakly Nonuniform Thermal Effects in a Porous Catalyst: Asymptotic Models and Local Nonlinear Stability of the Steady States.. "SIAM Journal on Applied Mathematics", v. 52 (n. 5); pp. 1238-1259. ISSN 0036-1399.

Descripción

Título: Weakly Nonuniform Thermal Effects in a Porous Catalyst: Asymptotic Models and Local Nonlinear Stability of the Steady States.
Autor/es:
  • Mancebo, Francisco J.
  • Vega de Prada, José Manuel
Tipo de Documento: Artículo
Título de Revista/Publicación: SIAM Journal on Applied Mathematics
Fecha: Octubre 1992
Volumen: 52
Materias:
Palabras Clave Informales: porous catalysts, weakly nonlinear stability, normal form
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (810kB) | Vista Previa

Resumen

This paper considers a first-order, irreversible exothermic reaction in a bounded porous catalyst, with smooth boundary, in one, two, and three space dimensions. It is assumed that the characteristic reaction time is sufficiently small for the chemical reaction to be confined to a thin layer near the boundary of the catalyst, and that the thermal diffusivity is large enough for the temperature to be uniform in the reaction layer, but that it is not so large as to avoid significant thermal gradients inside the catalyst. For appropriate realistic limiting values of the several nondimensional parameters of the problem, several time-dependent asymptotic models are derived that account for the chemical reaction at the boundary (that becomes essentially impervious to the reactant), heat conduction inside the catalyst, and exchange of heat and reactant with the surrounding unreacted fluid. These models possess asymmetrical steady states for symmetric shapes of the catalyst, and some of them exhibit a rich dynamic behavior that includes quasi-periodic phenomena. In one case, the linear stability of the steady states, and also the local bifurcation to quasi-periodic solutions via center manifold theory and normal form reduction, are analyzed.

Más información

ID de Registro: 5799
Identificador DC: http://oa.upm.es/5799/
Identificador OAI: oai:oa.upm.es:5799
URL Oficial: http://www.jstor.org/stable/view/2102307
Depositado por: Memoria de Investigacion 2
Depositado el: 25 Ene 2011 12:14
Ultima Modificación: 20 Abr 2016 14:31
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM