Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins

Molina Fernández, Antonio and García Olmedo, Francisco (1993). Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins. "Plant Journal", v. 4 (n. 6); pp. 983-991. ISSN 0960-7412. https://doi.org/10.1046/j.1365-313X.1993.04060983.x.

Description

Title: Developmental and pathogen-induced expression of three barley genes encoding lipid transfer proteins
Author/s:
  • Molina Fernández, Antonio
  • García Olmedo, Francisco
Item Type: Article
Título de Revista/Publicación: Plant Journal
Date: December 1993
ISSN: 0960-7412
Volume: 4
Subjects:
Faculty: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Department: Biotecnologia [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

Clones for three barley non-specific lipid transfer proteins (LTP2, LTP3, and LTP4; formerly Cw18, Cw20 and Cw21, respectively) which had been previously shown to inhibit growth of plant pathogens, were selected and characterized from a cDNA library derived from young etiolated leaves. Genes Ltp2 and Ltp4 were located in chromosome 3H and gene Ltp3 was assigned to chromosome 7H by Southern blot analysis of wheat—barley disomic addition lines, using gene-specific probes (3′-ends of cDNAs). These assignments were confirmed by the polymerase chain reaction, using specific primers. The three genes were expressed in stem, shoot apex, leaves and roots (at low levels) throughout development. Genes Ltp3 and Ltp4 were expressed at high levels, and Lpt2 at low levels, in the spike (rachis, lemma plus palea and grain coats). Neither of the mRNAs was detected in endosperm. The proteins were localized by tissue-printing with polyclonal antibodies in the outer cell layer of the exposed surfaces of the plant, throughout the embryo, and in vascular tissues. Expression levels in leaves were moderately increased by 0.34 M NaCl and by 0.1 mM abscisic acid and were not affected by cold, drought, salicylate, 2,6-dichloro-isonicotinic acid, ethylene or ethephon. Methyl Jasmonate (10 µM) switched off all three genes. Inoculation with Av6 or vir6 isolates of the fungal pathogen Erysiphe graminis increased the three mRNAs, especially that of LTP4, which reached a maximum nine-fold increase 12–16 h after infection

  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM