One-dimensional dynamics of nearly unstable axisymmetric liquid bridges

Perales Perales, José Manuel y Vega de Prada, José Manuel (2010). One-dimensional dynamics of nearly unstable axisymmetric liquid bridges. "Physics of Fluids", v. 22 (n. 11); pp.. ISSN 1070-6631. https://doi.org/10.1063/1.3516640.

Descripción

Título: One-dimensional dynamics of nearly unstable axisymmetric liquid bridges
Autor/es:
  • Perales Perales, José Manuel
  • Vega de Prada, José Manuel
Tipo de Documento: Artículo
Título de Revista/Publicación: Physics of Fluids
Fecha: Noviembre 2010
Volumen: 22
Materias:
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A general one-dimensional model is considered that describes the dynamics of slender, axisymmetric, noncylindrical liquid bridges between two equal disks. Such model depends on two adjustable parameters and includes as particular cases the standard Lee and Cosserat models. For slender liquid bridges, the model provides sufficiently accurate results and involves much easier and faster calculations than the full three-dimensional model. In particular, viscous effects are easily accounted for. The one-dimensional model is used to derive a simple weakly nonlinear description of the dynamics near the instability limit. Small perturbations of marginal instability conditions are also considered that account for volume perturbations, nonequality of the supporting disks, and axial gravity. The analysis shows that the dynamics breaks the reflection symmetry on the midplane between the supporting disks. The weakly nonlinear evolution of the amplitude of the perturbation is given by a Duffing equation, whose coefficients are calculated in terms of the slenderness as a part of the analysis and exhibit a weak dependence on the adjustable parameters of the one-dimensional model. The amplitude equation is used to make quantitative predictions of both the (first stage of) breakage for unstable configurations and the (slow) dynamics for stable configurations.

Más información

ID de Registro: 5959
Identificador DC: http://oa.upm.es/5959/
Identificador OAI: oai:oa.upm.es:5959
Identificador DOI: 10.1063/1.3516640
URL Oficial: http://pof.aip.org/resource/1/phfle6/v22/i11/p112114_s1?isAuthorized=no
Depositado por: Memoria de Investigacion 2
Depositado el: 09 Feb 2011 14:32
Ultima Modificación: 20 Abr 2016 14:38
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM