Dynamics of counterpropagating waves in parametrically forced, large aspect ratio, nearly conservative systems with nonzero detuning

Vega de Prada, José Manuel y Knobloch, Edgar (2003). Dynamics of counterpropagating waves in parametrically forced, large aspect ratio, nearly conservative systems with nonzero detuning. "Fluid Dynamics Research", v. 33 (n. 1-2); pp. 113-140. ISSN 0169-5983. https://doi.org/10.1016/S0169-5983(03)00042-X.

Descripción

Título: Dynamics of counterpropagating waves in parametrically forced, large aspect ratio, nearly conservative systems with nonzero detuning
Autor/es:
  • Vega de Prada, José Manuel
  • Knobloch, Edgar
Tipo de Documento: Artículo
Título de Revista/Publicación: Fluid Dynamics Research
Fecha: Julio 2003
Volumen: 33
Materias:
Palabras Clave Informales: Parametric resonance; Gravity-capillary waves; Streaming flow; Asymptotics
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The dynamics of parametrically driven, slowly varying counterpropagating wave trains in nearly conservative systems are considered. The system is assumed to be invariant under reflection and translations in one direction, and periodic boundary conditions with period L are imposed, with L large but not too large in order that the effect of detuning be significant. The dynamics near the minima of the resulting resonance tongues are described by a system of coupled nonlocal Schrödinger equations with damping and parametric forcing. Elsewhere the long time behavior of the system is described by a damped complex Duffing equation with real coefficients, whose solutions relax to spatially uniform standing waves. Near the bicritical points where two adjacent resonance tongues intersect a pair of coupled damped complex Duffing equations captures the properties of both pure and mixed modes, and of the periodic solutions resulting from a Hopf bifurcation on the branch of mixed modes. As an application, we consider a Faraday system in an annulus in which a pair of counterpropagating surface gravity-capillary waves are excited parametrically by vertical vibration of the container, including the mean flow driven by time-averaged Reynolds stresses due to oscillatory viscous boundary layers along the bottom and the free surface. This mean flow is shown to have a large effect near the bicritical point, where the mean flow changes the dynamics of the system both quantitatively and qualitatively. In particular, inclusion of the mean flow permits Hopf bifurcations from the branches of pure standing waves, and parity-breaking bifurcations from mixed modes.

Más información

ID de Registro: 6056
Identificador DC: http://oa.upm.es/6056/
Identificador OAI: oai:oa.upm.es:6056
Identificador DOI: 10.1016/S0169-5983(03)00042-X
URL Oficial: http://www.iop.org/journals/FDR
Depositado por: Memoria de Investigacion 2
Depositado el: 17 Feb 2011 11:07
Ultima Modificación: 20 Abr 2016 14:41
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM