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Abstract

We consider the standing wavetraing that appear near threshold in a nearly conservative, parametrically excited, extended
svstem that is invariant under space translations and reflection. Sufficiently close to threshold. the relevant equation is a Ginzburg—
Landau equation whose cubic coefficient is extremely sensitive to wavenumber shifts. which can only be understood in the context
of a more general quintic cquation that also includes two cubic terms involving the spatial derivative. This latter cquation is
derived {rom the standard system ol'amplitude equations for counterpropagating waves, whose validity is well established today.
The coefficicnts of the amplitude cquation for standing wavces arc obtained for 1D [Faraday waves in a deep container, to correct
several gaps in former analyses in the literature. This application requires Lo also consider the effect ol the viscous mean [Tow
produced by the surface waves. which couples the dynamics of the surface waves themselves with the free surface deformation
induced by the mean flow.
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1. Introduction

This paper deals with the weakly nonlinear dynamics of parametrically driven wavetrains in a nearly conservative,
extended system that is invariant under the orthogonal group O(2) generated by space translations and reflection,
These waves exhibit a frequency that is a half of the forcing frequency and a nonzero wavenumber, and appear
as the forcing amplitude exceeds a threshold value. The simplest case is that in which the system is large only
in one direction. Because of invariance under reflection, the waves either propagate to the left or to the right.



But, at sufficiently simall amplitude (namely, sufficiently close to threshold) the parametric forcing favors an equal
superposition ol thesc waves that builds a standing wave, herealter SW. A first aim of this paper is lo derive and
discuss the amplitude equation for the evolution of this SW. In addition. we shall consider the Faradayv system at
small viscosity, which is by far the most studied example of nearly conservative, parametrically forced, extended
sysicm. The waves named afier Faraday |1] are gravity-capillary surface waves that are parametrically exciled by
vertical vibration of the container [2—4]. Unfortunately, this is not the simplest example to illustrate the analysis
below. This is because the correct description ol the Faraday system requires to consider a viscous mean flow, as
already pointed out by one of ns in a series of papers [5-8]. But even ignoring the mean flow, as we shall do for the
sake of clarity in the remaining of this section, there is no a systematic derdvation in the literature of the amplitude
equations that directly describe the SWs near threshold in the small viscosity limit, and current approaches exhibit
some essential deficiencies, whose correction is the main object of this paper.

In fact, these deficiencies arose when we took the limit of small viscosity in the results of onr weakly nonlinear
analysis of viscous Faraday waves near threshold [9]. In particular, the coefficient of the cubic term in the
SW-amplitude cquation showed a significant discrepancy when comparcd with current nearly inviscid calculations
in the literatute (see Fig. 2c below), which in turn had been already controversial [10]. When analvzing the
discrepancy, which was not due to any mistake in the calculations in [9] (as checked with former independent
results by Chen and Vifals [11]. see Fig. 2c below) we encountered a chain of mistakes in current analyses at small
viscosity (¢ < 1). Namely:

A. We checked that the cubic term. S5(~1), in the SW-amplitude equation {namely, Eq. (3) below) is extremely
sensitive to the wavenumber £ it shows a (((1)-correction when & is varied by a O(£?) quantity. The wavermmber
at threshold (centered at its inviscid approximation) is of the form [11] (see Eq. (31} below)
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This yields a first mistake because current calcnlations are made at k., = 0. But this is a subtle matter because
k. can be decomposed into two parts, k. = k.o + .. where k.o = k&% + kyoe® + - - - is produced by viscous
clTects only and can be climinated from the outsel by a change of variable, sce below; thus ihe shifl k. has
no effect in Bs. i, = kz16° + - - - instead is due to parametric forcing and has a (1) effect on S5 that can
be calculaled analvtically. This clfect can be added to current results in the literature (which ignored i), bul
unfortunately a (smaller but still) (1) discrepancy remains. Therefore, additional gaps must be present in
existing (asymptotic) computations of As and the whole asymptotic calculation of 85 must be carefully repeated.
But this (quite tcdious) asymplolic analysis is beyond the scope of this paper. The asympiotic valuc of 85 is
calculated below letting & — 0 in the viscous calculations in [9].

B. Theextreme sensitivity of s 10 the wavenumber shilt is not compatible with the SW-amplitude cquation gucsscd
by Milner [12], which has been uncritically taken for granted in the literature. When conveniently scaled (see
Section 3.1 below), this equation is

A= ?A + ol — ) A — %mm —efs|al’A, )
where (o, ~ £ is the threshold value of the forcing amplitude g and 8y ~ 81 ~ f» ~ fs ~ 1. Eq. (2) should
apply ina close neighborhood of threshold (|k — k.| ~ £, |u — jee| ~ &7, see Fig. 1) and reduces to the standard
Ginzburg-Landau (GL) equation with real coefficients,

A= %AH + Bolpe — 1o)A — :—:ﬁS\A\ZA, 3)

inastill closer |k — k.| < &7, |pt — o] <€) neighborhood (Fig. 1). Up to rescaling, this is the usual equation
that describes the weakly nonlinear response near threshold of parametrically driven waves in fully dissipative

systems [9]. Now, a O(s%)-wavenumber shift is accounted for replacing 4 by Aei’-*Z‘S-’“, which adds (new terms




Fig. 1. The neutral instability curves of the spatially uniform SWs of (21) ignoring the etfect of the wavenumber shift (curve on the rnight) and
taking this effect into account (curve on the left). Note that the wavenumber shilt is oo large 1o be appreciated in that part of the marginal
instability curves associated with the G1. kq. {3), but is in the scope of the quintic Eq. (4). Milner’s quintic Eq. (2) would also apply in the larger
domain. [k ~ &2, |t — 11| ~ &

proportional to izA, and £ A but) no correction to fs. The O(1)-effect on A5 requires the presence of at least
one new term, namely a term proportional to is~'| A|2A,. The correct equation is
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The new terms in (4) (cf (2) are of the same order as the remaining nonlinear terms in the distinguished limit
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which is defined such that all terms in Eq. (4) are comparable. As | — .| << &° we obtain {(after appropriate
rescaling) the GL Eq. (3) again. For larger |u — i, as 8 < |t — .| <€ &, Eq. (4) can be rescaled such that all
terms except the cubic one (which becomes smaller) be still comparable, namely Eq. (4) can be replaced by
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The upper restriction for the scope of (6), |1t — .| € &, results from the fact that as |;x — .| ~ £ or larger, the
description in terms of SWs is not the relevant one and the two counterpropagating waves that build the SW must
be considered separately, see [5,8].
The SW-amplitude equations (4) and (6) are new, to our knowledge. They both exhibit two cubic terms involving
the spatial derivatives, which (a) break a spurious reflection symmetry because both (4) and (6) are invariant under
the action

(x, A) > (—x. A). (7)

which results from the reflection symmetry of the original problem, while both (2} and (3) are invariant under the
actions x —» —xand A — A separately; and (b) prevent the existence of a Lyapunov function, which exists for both
(2y and (3), as is readily seen. Properties (a) and (b} are expected to have a dramatic effect in the dynamics and, in
particular, to allow non steady attractors.

Although the more interesting consequences of the corrections to previous theories mentioned above manifest
themselves in two-dimensional Faraday waves (which require a 3D container), in order to clearly explain the nature



of the difficulty that led to wrong results, we shall consider the simplest one-dimensional case. And since the same
difficully appears in other nearly conscrvative, exiended systems thatl do not produce any mean flow, we shall first
treat the problem at this level of generality. The difficulty can be seen (and the correct SW-equation can be guessed)
in a quite simple (but careful} analysis, which will be performed first, in Section 2, But a complete denivation of the
SW-cquation is necessary and will be presented in Section 3 in the distinguished limit (5). Comparison with exact
results for the Faraday system will be made in Section 4, where the effect of the mean flow will also be added. The
paper ends with some concluding remarks on the scope., conscquences, and extensions of the results below.

2, A preliminary analysis

The starting point is the standard description in terms of counter propagating waves, which in turn has been
derived from first pringiples in a number ol places (sec | 10,13] lor references) and is accepled today as a safe ground
for a consistent weakly nonlinear theory. The physical variables are of the form

u =AY, e TR L AT 0 TR L ceug 4o (8)

where o is half the forcing frequency and & is the corresponding wavenumber. The (complex) wave amplitudes A*
arc small and depend slowly inboth space and time, namely |AT | « [AF| « |A%| « 1, [AF| « |AF|, and salisfy
amplitude equations of the form

AF = 2u,AT — s AT +i(e2| AT + 03| AT AT + 0y AT, 9
where
O<puxl and 0<el (10)

denote the amplitude of the parametric lorcing and (he decay rale duc Lo dissipation, respectively. The cocllicients
vg, @1 > 0, ap, o3, and ey > 0 instead are all of order unity and account for transport at the group velocity, lingar
dissipation, nonlincar (s¢lf and counter) interaction, and parametric [orcing, respectively. Detuning duc 1o dissipation
could give a term proportional to is A<, but this is eliminated redefining the wavenumber k. Note that dissipation
is only accounted for in that term proportional to AT, the remaining terms being Hamiltonian, The system (9) is
invariant under the actions

x——x, Ate A, x—x+e (loralleg;

. 11
AT o et Ai; and t—>t+ ey forallea, (1)

which result [rom invariance of the original problem under space reflection and translations. Note that these [our
actions generate a svmmetry group that is larger than the original ©(2) group, the additional spurious symmetries
(one of the actions associaied with ¢; and ¢, and the action associated with ¢3) resulting from iruncation.

For sufficiently small |A%| (namely, sufficiently close to threshold) we have [A*| ~ |A~|. Thus A can be
written as (AT, A7) ~ (A, A)ei" for some SW-complex amplitude 4. Replacing this into (8), we obtain

a = 2 cos{of + WA, e +cclag + - . (12)

This is nothing but the SW mentioned above. In fact, the threshold for the appearance ol nontrivial waves is calculaled
as the instability limit of the trivial state AT = 0. Setting (AT. A7) = (AT, A;)e* T in (9) and linearizing, we
obtain that the most unstable mode is such that |A0+| = |A; | (namely, a SW). The dispersion relation is

2
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ask &« pand e < 1, where

prp == 8 (14)
oy

is the instability threshold amplitude. This gives the marginal instability curve (plotted on the right in Fig. 1)
T ,ﬂaf%z—:z + 1)§k‘2/a4 >~ e+ t.rg,fcz/(Zm aq¢). The bilurcated solutions arc spatially uniforn: SWy of the form
AT = Reitkert) (15)
where R and v are given by ¢18 = wape cos 2v and
afe’ 4 [ugk + (o2 + an)R7) = i, (16)

as obtained replacing (13) into (9) and climinating the phasc v in the resulting complex cquaiion, Using this and
{14y weseethatasw =0and R — 0,

(2 + o3P R?

gy — o) = > (7
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This and (13} suggest the following SW description near threshold
e b
AI == %Ax.{ + 180(# - ur)A - %‘A‘iA (18)
where the SW-complex amplitude 4 is as defined in (12) and
2 2
e (az + 3)
fo=as Pr= % fp=-t 0 (19)
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Note that since «r; > 0 and wq = 0, these coefficients are all positive.
T # O0aterm v,{eg + a3k K2 /oy must be added in the right hand side of (17), which in turn yiclds a new term
in the right hand side of (18). namely

. w4 w3
g |A]2 Ay
¥ E

which is comparable 1o the remaining terms in the limit (3) and has been always ignored in previous analyscs. For
consistency, a term proporiional to (|A|*), A must also be added that has been also ignored. Thus (18) must be
replaced by (6), where 5 cannol be caleunlated [rom this simple analysis based on spatially uniform SWs, but
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o
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Eq. (18) is not expected to apply for sufficiently small |2 — p.| due to the absence of cubic tenmns, These appear
beeausc ol higher order effects of dissipation and parametric forcing, The amplitude cquations (9) must be replaced
by

AF = Ho, + i AT — e AT 1[Gz — ey)| AT 4 Gy — eys) AT A4S
il AT FivgAT + 5| ATPAT 1y AT AT + (AP AT, @n
where the new coefficients y4, ..., y7 are real. In particular,
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Those linear tenns proportional to ieAT and is AT account for the wavenumber dependence of <) and wy and are
¢ssential in the analysis below becanse they provide the wavenumber shilt mentioned above. They were ignored
both by Milner [12] and in all subsequent analyses, see [10]; this gap is perhaps a consequence of the fact that o
and a4 are usually sct 10 onc by a (wavenumber-dependent!) rescaling. The new terms in (21) have been added
taking into account:

i. That if g is set to zero, then the problem is autonomeouns and thus is invariant under the action AT > gl AT

forall ¢y.

ii. That the equations must be invariant under the actions (11).

iii. The form of the forcing term, assumed monochromatic, proportional to ye sin 2ex . which excludes an additional
term proportional to (A T)2 AT that is also invariant under (11).

iv. That thc appropriate scaling is such that u ~ & < 1, |#/df] < ¢, |6/0x| << &, |AT]? « &, scc Egs. (42)—(43)
below. This excludes higher order terms like, e.g.. dispersion, which would give a term proportional to iAZ,,
and some terms that are quadratic in A+ and linear in AT

In principle, Eq. (21) should also include some (omilled) additional terms that arc of the same order as thosc
considered and are discussed now. Viscous effects and parametric forcing lead to (i) a detuning term proportional to

isA*T (23)

(where 8 < & may depend on ), which is climinated by a ncar-identity redefinition of the wavenumber £ in (8);
and (ii) some small corrections 10 vy, w1, ..., and o5, which are eliminated by near-identity redefinition of these
coellicients. (iii) An additional term proportional 1o 15AT (with & <« p) is climinated by a ncar-identity change of
the phase of A*. And (iv) some additional terms proportional to

Y ATPAT,  ip|ATRAT,  ip(ATREAT (24

cannot be eliminated in a simple way, but they do not contribuic Lo the linal SW-amplitude cquation (as explained
below) and are ignored from the outset for the sake of clarity.
Substitution of (13) into {21) and elimination of v yields (cf (16))

ler + vk + (2 + yO R Pe” + [ogr + (o2 + ax) R = [og + yax + (vs + v + v R (25)

Note that those terms of the form (24) are eliminated introducing in the right hand side of (13} a factor ei"Rz, for
some appropriatc constant ¢; this in {urn gives new (erms in (23) that are higher order, namely (2 R®, and can
be neglected. Setting R = 0 and « ~ &7 in (25) we obtain the marginal instability curve (left curve in Fig. 1)
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The instability threshold is now (cf (14))
2 2 2
3 o : o :
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Nole that the correction on g is ncgative and thus «,. has a destabilizing clTect. Replacing = &, into (25) and
solving the resulting equation for £ < 1 and R << 1 we obtain, at leading order (cf (17)),

(2 + 3P R + 2u,(02 + e R? N aalyz+y3) —enlys + vs + 1) 20
20!1 0[4 ' '

aas(p — p) = (28)



Using this, we can correct Eq. (18) to obtain Eq. (4), where 8y, f1. 82, As. and 2, are given by (19), (20), and (27).
The cocflicient of the new cubic lerm is

Bs = Bso + Bs1. (29)
where

aglyz Hvs) —alys + ¥ + ) _ velur a3k
Bso = s P=E

S
oy w1E”

(30)

(with x, as defined in (27)), as obtained laking into account (27) and (28). Note that 851 15 responsible lor the
((1)-correction ot 85 mentioned above.

Eq. (4) can also be sysicmatically derived from (21), This is done in the next section, where the stll unknown
coefficient 83 will be also calculated and the expressions for the remaining coefficienis will be checked.

3. Asymptotic derivation of the SW-amplitude Eq. (4)
Here, we derive the SW-amplitude Eq. (4) from the counterpropagating waves cquations (2 1), In the distinguished
limit (5), we use the following scalings for the slow space and time variables and the bifurcation parameter
=g, t=2% aa(p—p) =62 (301
The forcing amplitude ai threshold and the solution of (21) are expanded in powers of & as
Gaple = 01 + &%51 + 8759+, AT = eri + SZAT_L + ssAzi + - 32)

Replacing (31)—(32) into (21) and sciting o »cro the coclTlicient of cach power of &, we obtain the following problems,
atorders 2. &*. and ¢*,

:t n 3
AT = AT, (33)
al(AT — AT = 2 AT + 51 AT + ez + an)|AF AT (34)

R . o1Ya .
a(AF — AT) = —A]. £ v AT i (}/1 - 0—4) Afe (X + AT

¥s+ve + w7 o } 5=
_ [yz + s —a T} |ATI2AT + iaa[2| AT P AT + (AT AT)

+ies[|AF AT + AF) + (A5 AT (35)
where (33) and the solvability condition of (34), which is
51 =0, (36)

have been used in (35). The SW-amplitude equation is now obtained from the solvability condition of (33), which
is obtained adding the Eq. (35) for Aé" — A} to the complex conjugate of the equation for A — Ai", dividing by
2. and invoking (33) and (34). It follows that

G4 —oaya 4
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Note that that term proportional to i/li,';k provides the above mentioned shift in the wavenumber at threshold. In
order to eliminate that term (and center the amplitude equation at threshold). we set

AF = Aexp [—ig (S—i _ ;’—j) g} (38)
(which can be also written as A0+ = Aexplin.£/e%). with k. given by (27)), to rewrite (37) as

Ar = Pag + XA - BIAPA —iB(A A — iy APA: — Bs|APA, (39)
provided that

(1cq — a1ya)?
o
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where 81, B2, Ba, and fs arc as given in (19), (20), and (29), whilc

Dy
fr= = (41)

o
Replacing 4 by «~ 1 A into (39) (see Eqs. (32) and (38)) and taking into account the scalings (31), we obtain the
amplitude Eq. (4), which was the main objcct of this scclion. As a byproduct, substituting (36) and (40) inlo (32),
we obtain the value of the threshold amplitude ;¢ anticipated above, in (27).

3.1, Validity timits of the SW amplitude equation
For comvenience, the SW equation has been derived in the distingunished limit (31), with |AE] ~ & (see (32)).

This limit is distinguished becanse it leads to a SW equation in which all terms are of the same order. But the SW
equation has a wider scope, namely it applies whenever

= o] < e, (42)
provided that
d 2
o « & ‘d\‘ Lo AT e (43)

These conditions result by inspection of the main ingredient in the analysis above. whose validity only requires
that Eq. (21) reduce to equations of the form sey A* — (g AT = higher order terms, see (33)~(35). This in turn
requires that (he remaining terms in (21) be small compared to ¢|A*| ~ 1| AF|. Conditions (42)—(43) suggest (0
rescale (21) replacing j¢ — s, t — /e, x — x/e, and AT — /eA=, which in turn leads to the following rescaled
version of (4)

Ap = BiAse + Polpt — o)A — Bl AI'A = iB3(| AP A — B4 | AP A, — 285] A7 A,



in which we must sfill require that - - - < | Ay <€ |Ay| € |A] & 1 and that |A;| < |A|. Furthermore, it is readily
scen Lhat when repeating the derivation above with (the new scaling all coellicients in the SW amplitude cquation
exhibit bounded coefficients and thus the omitted terms (proportional to powers of 4, A,, A,y....), are small
compared to those displayed and can be safely neglected. Thus, the appearance of unbounded coefficients in (4)
was only an artifact of scaling, which in Eq. (4) was choscn (o coincide with that in the counterpropagating waves
equations (9), to facilitate understanding the introductory analysis in Section 2,

Now we (urn on the validity of the approximations (3) and (6) of (4). Cubic and quintic icrms arc comparablc in
(4 if Ba| Al*/e ~ efs|Al* ~ Bolp — pel. which requires that

Bopa
For smaller values of |t — f¢.| the quintic term can be neglected and the approximation (3) applies, while for larger

values. the approximation (6} can be used. Note that (44) yields in practice extremely small values of | — p | if £
is quite small.

{(44)

= pa] ~

4, The Faraday system

We consider a 2D, laterally unbounded, horizonial liquid layer of unperturbed depth o*, which is vibrating
vertically with an amplitnde p* and a frequency 2e*. For nondimensionalization of the Navier Stokes equations
and boundary conditions, we use the characteristic time «" ! and the characteristic length ¢£*, defined as

g a3
E &
me - &

—, 45
A AN (35)

where g 1s the gravitational acceleration, ¢ the surface tension, and p is the density, all assumed constant. The
resulting problem depends on four nondimensional parameters, namely

/ Jd* Tk . a it
d=—, pu=— —_—
A

" S=—— and &= (46)

S o+ pglisd’
which are the container’s depth. the forcing amplitude. the gravity-capillary balance parameter, and a measure
of viscous effects, respectively, where v is the kinematic viscosity, Note that .5 is such that 0 < § < 1, and the
extreme values S = 0 and 1 correspond to (the purcly gravitational (o = 0) and the purcly capillary (g = 0) limils,
respectively. As above, see (10), we assume that both parametric forcing and dissipation be small, which require in
particular that viscous clfccts be weak, namely that 2 be small. This in turn requires that both kinematic viscosily
be small and the forcing frequency be not too large (for as w* — oo, the denominator w*£% — 0, see (43));
a complete quantitative analysis of the combined effects of viscosity and the forcing frequency in the Faraday
instability threshold can be found in |14]. Also, we consider the limit of decp layer,

d 1, 47

which is the only one treated in the literature at this level. Note that the characteristic length #* has been defined in
(45) such that ex{1) = 1, where ex(k) is given by (he inviscid dispersion relation

»={(1— $H + Sk*. (48)

Thus the nondimensional (requency and wavenumber of the exciled surface waves will be such that w =~ 1 and
k ~ 1. If the nondimiensional free surface elevation is written as (cf (8))

f=AYa 0t 4 AT (0, N Lo+



then A* is given by the amplitude cquations (34) below, which reduce to (21) if the mean flow is ignored (as
systematically done in the literature). Ignoring at the moment the mean flow. the following coefficients of (21) have
been calculated repeatedly in varions places (3] and references given therein)

1428
Vg = % ar=2, =4 w=1wu=-1

38 +8—3S 2 4438
1 —3% 14 - '

oy = (49)
The nonlincar cocfiicients 32, y3. ys. ¥%. and p7 have been also caleulated clsewhere ([10] and references therein),
but we do not have enough confidence in these fairly involved calculations because the value of 85 they provide is
not correct, sec below, Thus, we cannol use Eq. (30) (o obtain fsp, which is approximated sctting & = 1072 in (he
counterpart of 85 calculated in [9] for arbitrary £. This is plotted with solid line in Fig. 2a, where it is compared
with both its counterpart for the indicated finite values of ¢ (plotted with dashed line. as calculated in [9]) and the
valuc ol 85 obtaincd from current theorics | 10,15]. This laticr comparison makes sensc becausc the contribution Bs.
has been ignored in [10,15]. and shows a (1) discrepancy; in particular, at § = 1 (the only value of S considered
in [10]) the exact value of Bsp is 11.22, while the value calculated in [10] is S50 = 12.0. Note that the asymptotic
value is quite good for £ < 0.003, except in a vicinity of § = 1/3, where fisy diverges if ¢ = 0 because of a well
known 2:1 resonance (where the inviscid dispersion relation (48) is such that «{2) = 2«w(1)), but takes large but
finite valucs if 0 < & < 1,

With (49) we can use {27) to calculate the wavenumber shift at threshold responsible for the effect described in
Section 2.

—16¢2

Ko — m. (50)

This coincides with a part of the /(%) correction of the wavenumber at threshold calculated by Chen and Vifials
[11Eq. (16)], which is

@ [6(1+25) + 16]¢*
1428 (1 4+25)

(51

Asanticipated just after Eq. (1), the difference between both expressions is a wavenumber shift dve to viscouns effects
only, which has been eliminated in this paper by the near-identity wavenumber correction mentioned just after Eq.
{23): this wavenumber correction produces a O(e™?) and a (%) corrections to the threshold amplitude 72, that
have not been calculated above. The shift (50) instead is due to parametric forcing and produces the contribution
51 1o the cubic cocflicient, which invoking (30) and (49) is given by

hoy 4 2 3,98 .
T rvos\ 1438 1357 4 ) -

This is plotted with solid line in Fig. 2b, where a comparison with its counterpart for indicated finite values of &
(plotted with dashced ling, as calculated in |9]) is also shown, Nolc thal again the asymptotic valug is {airly good
for ¢ < 0.005, except near § = 1/3. For completeness, the whole coefficient 85 = sy + Bs1 is plotted with solid
line in Fig. 2c. as calculated using Fig. 2a and b. This is also compared both with its counterpart for the indicated
finite values of & taken from [11] and [9], which coincide between each other with great precision (a good indication
that the calculations in both [11] and [9] are correct). and with the results from current asymptotic theories, which
show a significant discrepancy ; the discrepancy is duc 10 both (a) a mistake in the asympilotic calculation of B5g (scc
Fig. 2a) and (b) the fact that ihe correction 85, has been ignored. Note that fs is always positive, which means that
the cubic term is always stabilizing in the Faraday system.
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5% 1077, and 5 x 107 (the arrows indicate decreasing values of &), (—-— - — y as caleulated in [15] tor & = 0: {v) as caleulated i [11] tor
£ =35 x 107% (o) as calculated (for & = 0) in [LO]. where only the capillary limit was considered.



Finally, using {19}, (20), (41), and (49), we readily obtain the following expressions for the remaining coefficients
in Eq. (39)

(142872 3 2 9572
go =1, f=—-— "1 g .
Ao h 16 P=1I1T735 1135 4
b 1 +25T 35 835 4 — 1+25[ 38 y) 9§ 53
T4 | 1-3s |0 T T T | 1-35 1+35 4 .

which are plotted versus S in Fig. 2d and e. Note that §; compares well with its countegpart for finite £ calculated
in [9]: fa. Bs. and By instead do not have counterparts Tor finite £, and (as f5 does) diverge at the 2:1 resonance
mentioned above. Also note that 83 and A4 change sign at § = 1/3. while 8; is always positive, as we already
poinled out just aficr Eq. (19).

Unfortunately, the amplitude Eq. (39) only applies to the Faraday system for quite small | X| (when in fact it
reduces to the GL Eq. (70) below). For not so small | ¥| we must add the effect of the viscous mean flow, which is
considered next.

4.1, Amplitude equations corrected by the mean flow

Al small viscosity, the Faraday system exhibits an oscillatory boundary layer attached (o the [ree surface, which
generates a viscous mean How in the bulk. This mean flow in turn couples with the weakly nonlinear dynamics of
the primary surface waves. This effect vields new terms in the amplitude equations (2 1), which to the approximation
rclevant here are

0
AE = +(u, +ipe)AT — o AT + [(mg — 1) AL + (s — e)| AT + 2if g2y dy:| AT
7(1 :

+los AT F iy AT + ps| AP AT 4 | AT AT 4 37(4FY AT, (54)
Here, ¢ is the streamfunction of the mean flow, defined such that the horizontal velocity is —y'. ¢ is given by

ym =0, (55)

yryy
in —4 <« y = 0, with boundary conditions

VR = SR =20AT P - AT e =8IATE AT L =SR 4 eg, =0 aty =0, (56)

x yvy
B =P =0, aty = —d, 57

where /™ is the free surface deflection produced by the mean flow.
These equations are obtained adding to their counterparts derived in [5] the higher order terms already considered
in (21). Also:

* Since d 33 1 (sec (47)), the cilcet of the boundary layer attached 1o the boltom of the container (which gencrates
a O{e*%)-mean flow velocity) has been neglected. In fact, at the moment we only neglect (e ~>%)-terms (which
requires in practice that, say, ¢ > 2) but keep algebraically small (erins in 4~

o In the boundary condition (36c) we have neglected capillarity, which gives a new term, e* sy”gg&. Note that this
cannot be neglected if 1 — § = 0 or, more generally, if |1 — §| = (). Thus we are excluding the case of too
small gravitational effects.

« W anticipate that the mean Mlow is quite weak (™| ~ & and | f™| ~ &7, according to Egs. (31)-(33), (58)~(59),
(62). and (63)) and thus neglect convective terms in (35) and higher order terms in the boundary conditions. Also,
invoking (31) we neglect time denvatives in (53).



Because of these simplifications, we can integrate (55)-(57). Tt follows that

(1 = Sy +dy¥Q2d — y)/m

P = Ay + DHATE - 1A+ o (58)
where f™ is given by
L — §)d fm
= # 3201+ 2dH(AT) — |ATD).. (59)

3&

This latter equation shows that the slow motion of the free surface elevation is due to the restoring effect of gravity
and the forcing ciTect of (he free surlace waves. Replacing (58) into (54) we obtain

AT = oy + i a)AT — s AT + (i — )| AT + (s — ey3)| AT[F]AF
+ g AT FipgAT + y5| ASPAT 4y ATIPAT 4 pr(A%)? AT
Lilys(1AT 1P — 14T + 67 o A7, (60)
where we have neglected (X(e™>)-terms and

1=5H22+1

ys=42d -1}, w 1 (61)
Now wc extend the analysis in Scction 3 (o (60), using (31)-(32) and
M=o+, (62)
where the order of magnitude of f™ is anticipated from (59) and the following expression
AT — AT 12 = AT AT — A +cel+ -, (63)

which results invoking (32)—(33). Substituting (31)»-(32), (58), and (62) into (60), we obtain again (33) and (34),
but the following term must be added to the right hand side of (35)

LilysAJ (AT — AD) 0.0 + yodu] AT

Consequently, the following term must be added to (37)

| yav 5
(| 254 P + ne | 43

and introducing

¢ = —yogo. (64)
we obtain (cf (39))

Ar=PiAg+ XA — BIAIA — 1B AA — B AP As — B5|AI°A —igie A, (65)
where 81, B2, £2 and S5 are independent of (he mean (low and (hus are again as ploticd in Fig, 2¢—c, but

Yetly
o]

By=ps — =B — (L +282d - 1) (60)
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Fig. 3. The rescaled coefficients (a) ﬁ;/a’, and (h) ,H(,/d:‘ (which is independent of &). and ,H-;/d“ appearing in Eqs. (65) and (67). for ¢- - -)
o =210 and 100 (the arrows indicate increasing valucs of ), and (—) d = 0. as calculated from (66) and (68).

shows a correction due to the viscous mean flow. Similarly, Eq. (59) can be written as

$r = Boes — Br(lA e, (67)
where

(1 — 8S)d wug(l+2d%)  (1+285)(1 — $)(1 +24%)

fo="rs Pr=27F = : (68)

3 o 8
Because of volume conservation, the spatial mean value of ¢ must be zero, namely
. 1 I8

() = lim — f HE T)dE = 0. (69)

L—oc L Jg

The (rescaled) coefficients g5 /d, Bo/d?, and B7/d"* are plotted (vs. S, for the indicated values of &) in Fig. 3. Note
that for finite d, 45 /d diverges at the 2:1 resonance (at § = 1/3) justbecause of the divergence of 85 (see Fig. 2-e and
Eq. (66)), and that f7/d* approaches its asymptotic value quite rapidly as d — oc (in fact, the curves for d = 100
and ¢ = oo are indistinguishable); Be/d” instead is independent of d.

Summarizing, the dynamics of the surface waves are (coupled to the free surface elevation and) governed by
Egs. (65) and (67). Note that the coupling effect (namely, the last term in Eq. (65)) is produced by the viscous mean
flow, and not by the mean free surface elevation itself. Namely, coupling comes from that term in (54) that depends
on the mean flow horizontal velocity (—\"'), using Eq. (58) for 3'". In addition, the viscous mean flow corrects the
coefficient B3 (see (66)). '

As it happened in the absence of mean flow, we obtain the counterparts of Egs. (3) and (6) for small and large
| X, respectively. In the former case, |0/07| ~ |32/0&%| ~ |A|? ~ |¢| ~ | X| < |, and Eq. (65) becomes decoupled
from (67) and simplifies to the following standard GL equation

A= B1Ag + A — f5|APA. (70

Note that the mean flow plays no role in this limit, The limit of large | X| leads to the scalings |3/ 07| ~ |#°/9£% ~
|A[* ~ |¢['/?2 ~ | Z| 3> 1. Thus all terms in (65) are comparable except the last two ones, which are smaller, and
{65) is again decoupled from (67) and reduces to

A=A+ ZA— B|APA — B ADEA — B A A (71

This equation coincides with (6) except for the scaling and the value of the coefficient 3, which is affected by the
mean flow.



Finally, we consider the limit of large & (recall that 4 was assumed only logarithmically large above). In this
limit, 85 ~ d, B ~ d°, and Bz ~ d* diverge as d — 0. Because of this, ¢ ~ d is also large, namely

6v,d
¢ = ﬁ—Z(\AF S ;—j(mﬁ — (A1), (72)

B

as obtained from (67) invoking (68)-(69). Also, those terms proportional to £} and ¢ dominate the remaining ones
in the right hand side of (65), unless X, |A|, and |4/0%| are small. The distinguished limit is

T=L?r~L '¢=¢r~E=1’Y~B=LA~ .
Using this, (66), and (72), Eq. (65) simplifies to
. .d -
Br = 1By +~ LB+ lﬁaz(IBlz)rB — ps|BI°B, (73)

where ) and fs are still as calculated above, but

- yavy  Ov, 1428
=—" - — = : 74
B=ad w2 (74)
Eq. (73) exactly coincides with (the limit for small viscosity of) its counterpart derived in [9], which applies as
d > 1, without further restriction on &. The coefficient 83 is compared in Fig. 4 (as already done with 8y in Fig. 2d)
with its counterpart in [9] for the indicated (small but nonzero) values of . Note that the agreement is again quite
good.

4.2, Validity limits of the coupled SW equations corvected by the mean flow

The argument in Section 3.1 shows that the coupled system (54)}-(57) applies whenever (42)(43) hold and
Iy < . (75)

This latter condition ensures in particular that inertia (resulting from the time derivative and convection) can
be neglected in the momentum Eq. (55). And the same argument in Section 3.1 again shows that no further
approximation applies if {44} holds. For smaller values of | — jt.|, the approximation (70) can be used, while for
larger values of |1 — s¢.|, the approximation (71} is safe.
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Fig. 4. The coefficient 53 appearing in Eq. (73): (—}as given by Eq. (74) and (- - -) as calculated by Mancebo and Vega [9] for = = 1.25 » 1072,

5% 10 P and 5 x 10 * (the arrows indicate decreasing values of £).



5. Concluding remarks

We have obtained the quintic Eq. (4) that describes the dynamics of the SWs that appear near threshold in
parametrically excited, nearly conservative, large aspect ratio systems that are invariant under (¢2), The coefficient
of the quintic term B = 1), as explained just aller Eq. (19), which means that all solutions of (4) and (6) arc
bounded. The sumultaneons presence of cubic and quintic terms in this equation does not require to be near a
codimension-two poinl of the paramcier space, but is a consequence ol the smallness of dissipation (which of
course can be seen as a codimension-two point of the parameter space of a fully dissipative system). We have
shown that the cubic coefficient shows exireme dependence on wavenumber, which (a) implies that this coefficient
must be calculated quite carefully in order to avoid wrong results, and (b) requires the presence of some cubic
terms that imvolve the spatial derivative and have not been considered before. As explained in Section 1, these
later terms prevent the existence of a Lyapunov function and break a spurious reflection symmetry, and thus have
consequences in the dynamics. Eq. (4) only possesses the reflection symmetry (7). which implies in particular that
all cocliicients, By, ..., Bs. arc rcal. This mecans, in particular, that thosc lerins proportional to £, f2, and B85 arc
dissipative, which could be surprising at first sight becaunse these terms seem to come from Hamiltonian terms of
the original counterpropagating waves Eqs. (21). But dissipation is implicitly present in all coefficients because that
term accounting [or lincar damping in (2 1) (which must balance parametric forcing at lcading order) plavs a rolc in
the derivation of all coefficients of (4).

Eq. (4) is invariant under the actions

X — —X, A — A x— x—+c¢; foralleq: A — Ae?  forall 2, {— (+c¢z forall ez,

which result from the symmetries (11). Thus no spurious synunetry results from truncation (associated with ne-
glecting higher order {erms in the derivation in Scction 3), which is a good property o conjecture that (4) contlains
the whole dvnamics of the original counterpropagating equations in the limit |z — .| <& &, which is the natural
scope of Eq. (4), as anficipaied in Section 1 and explained in Section 3.1, In fact, Eq. (4) applies without further
simplifications as | — .| ~ &1 for smaller and larger values ol | — p.|, this cquation simplifics to the GL Eq.
(3) and to the quintic Eq. (6), respectively.

The ideas above have been applicd and extended (o the Faraday sysicm. We have encountered two gaps in previous
calculations of the cubic coefficient. and have added the (systematically ignored in previous analyses) effect of the
mean flow, which is slaved to both (i) the surface waves and (ii) the free surface elevation if produces, see Eq. (58).
Thus the mcan flow has two ciTects, namely it (i) corrects the coclTicient 83 ol Eq. (4) and (ii) couples (4) with a new
amplitude equation giving the mean free surface elevation. The relevant amplitude equations, (65) and (67). have
been derived from the pair of counterpropagaling wave equations and the viscous mean flow cquation, which in turn
had been already obtained in [3]. The coefficients in the amplitude equations have been compared when possible
(see Figs. 2b, d and 4) with their exact counterparts for finite £ calculated in [9], with completely satisfactory results.
Thus we are quile confident on the quantitative resulls above concerning the Faraday system,

As explained in Section 4.2, Eqs. (65) and (67) apply without further simplifications as [z — g ~ £ (namely, as
(44) holds). For smaller valucs of |p¢ — .| the surface waves become decoupled from the mean flow and governed
by the GL Eq. (70), which is also the relevant equation for fully dissipative Faraday waves in deep containers
[9]. As | — o] 3 &%, the surface waves dvnamics become decoupled rom the mean flow (whose effcct is only
appreciated in the quantitative value of the coefficient 85 ) and are governed by the quintic Eq. (71). This latter equation
is the relevant one for comparison with experiments at quite low viscosity because for quite small # the restriction
it — | = O(e?) leads to extremely small values of |z — .|, which can be bevond experimental precision. In
fact, at quite small viscosity, the experimentally observed primary bifurcated branch at threshold shows a guartic
behavior that suggests a purcly quintic nonlincarily [16] and not the guadratic behavior (that should be expecled
from the cubic term. For instance, in the experiment by Donady, Fauve, and Thual [17] the liquid was water (o = 72
dynem !, v =0.0lcm?s !, p = 1 gom *) and the forcing frequency was 2e0* ~ 40 Hz. This gives invoking (45)—



(46), (49),(53). and Fig. 2c.& = 2.2 x 107", u, = 2. § = 0.67,and B2¢° /(o B2) = 3.76 x 1078, Thus the relative
precision for the effect of the cubic term to be appreciated is |« — jec| /1o ~ 8.4 x 10™%, which is seemingly bevond
cxperimental precision. This is not always (he case, ol coursc. For instance, in the cxperiment by Westra, Binks, and
van de Water [ 18], the liquid was asiliconoil (¢ = 18dynem ™!, v = 0.036 cm® s~ 1. p = 0.89 g cm ) and aforcing
frequency wasagain2e* ~ 40Hz; thuse = 1.6 x 1072 2, = 22,8 = 0.54,and 8Z¢’ /(BoB2) = 5.0 x 1073, which
give a much reasonable required precision, |p4 — pe|/ 4 ~ 0.16. This is consistent with the cubic behavior that was
experimentally observed at threshold [18], according to the previons theory in [13,11].

Withthese we can summarize the expecled behavior ol the Faraday sysiem near threshold lor quite small viscosily.
(i) As |pt — pie| < &, the system will show the dynamically simple behavior governed by the Ginzburg—Landau
cquation with real coclficients. (i) As |0 — p.| ~ &, nonpotential terms and coupling (o the mean low are expectled
to give complex dynamics resulting at least from oscillatory and Eckhaus instabilities. (iii) As e® < | — pe| < &,
coupling to the mean flow disappears but nonpotential terms remain and some (weaker) complexity is still expected.
And(iv)as|p — .| ~ sorlargerthe standing wave description is not appropriate and the whole counterpropagating
waves equations (coupled to highly nonlinear equations for the mean flow [3]) must be used. This whole picture
could not be observed for (small but) finile valucs of ¢, 1f, ¢.g., ¢ = 0.1 only regime (i) (and perhaps a trace of
regime (ii)) is to be expecied.

The fact that the viscous mean flow directly affects the dvnamics of the surface waves in the intermediate regime
lpt — phe| ~ & but not as £° & |t — pe| <€ & is surprising at first sight because for still larger values of | — pte|.
namely as |p — p| ~ & or larger, the surface waves (which are no longer standing) become again coupled to the
mean [low, as it comes oul from (he analysis of the counterpropagaling waves in [5,8]. Bul the naiure of this coupling
is different from that encountered above, namely as | — o] ~ &, it is the mean flow itself and not the associated
free surface elevation that affects the counterpropagating waves dynamics [5].

The mean flow and the new nonlinear ters do not alTect (he primary bifurcation from the flat state. Hs cffect
must be appreciated in secondary bifurcations and in the resulting non trivial dynamics (¢.g., periodic attractors,
which could not be present il both the mcan Mlow and the new nonlinear terms were absent). It is promising (hat
it is preciselv in connaction with these secondary bifurcations that experimental observations have not received a
satisfactory theoretical explanation. This is true at large aspect ratio for one-dimensional waves in both annular
[17] and rectangular [19] containers, and lor two-dimensional waves in 3D large aspect ratio conlainers |20]. For
the sake of clarty, we have only considered the restricted case of one-dimensional waves, buf the analysis above
clcarly shows that (a) the cubic coclficient must show a similar dramatic dependence on wavenumber that has been
not taken into account so far, and (b) both the new terms and the coupling to the mean low mmst play an essential
role also in 3D, and should help to give a convenient answer (o the several theoretical problems that remain open
today in conngctlion with two-dimensional Faraday wavcs at large aspect ralio.
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