Laboratorio de Innovación en Tecnologías Mineras

Ingeniería de la perforación de pozos de petróleo y gas.
Vol. I: Origen y características de los hidrocarburos.

2ª Edición actualizada y revisada

Madrid - 2020
ADVERTENCIA
El presente documento ha sido preparado con una finalidad exclusivamente divulgativa y docente. Las referencias a productos, marcas, fabricantes y estándares que pueden aparecer en el texto, se enmarcan en esa finalidad y no tienen ningún propósito de difusicomercial.

Todas las ideas que aquí se desarrollan tienen un carácter general y formativo y el ámbito de utilización se circunscribe exclusivamente a la formación de los estudiantes de la UPM. La respuesta ante un caso particular requerirá siempre de un análisis específico para poder dictaminar la idoneidad de la solución y los riesgos afrontados en cada caso, además de una valoración de su incidencia en los costes de inversión y explotación. Consulte siempre a su ingeniería, consultor, distribuidor y fabricante de confianza en cada caso.
Contenido

1. FORMACIÓN DE LOS HIDROCARBUROS .. 7
 1.1. Naturaleza del petróleo .. 7
 1.2. Origen de los hidrocarburos .. 9
 1.3. Generación de hidrocarburos a partir de la materia orgánica de las rocas madre ... 13
 1.3.1. Composición química de la materia orgánica en los sedimentos 13
 1.3.2. Constituyentes químicos esenciales de la materia orgánica 13
 1.3.3. Transformación de la materia orgánica en hidrocarburos 15
 1.3.4. Diagénesis ... 16
 1.3.5. Catagenesis ... 18
 1.3.6. Metagénesis ... 19
 1.4. Conceptos fundamentales sobre el kerógeno 20
 1.4.1. Características del kerógeno ... 20
 1.4.2. Transformación del Kerógeno ... 22
 1.4.3. Potencial genético del Kerógeno 23

2. CARACTERÍSTICAS GENERALES DE LOS SISTEMAS PETROLEROS 25
 2.1. Los sistemas petroleros ... 25
 2.2. Roca madre .. 26
 2.3. Roca Almacén ... 26
 2.3.1. Características petrofísicas .. 27
 2.3.2. Tipos de rocas almacén .. 31
 2.3.3. Porosidad y permeabilidad primarias 34
 2.3.4. Porosidad y permeabilidad secundarias 35
 2.4. Migración de los hidrocarburos ... 36
 2.5. Migración primaria. Factores y mecanismos 37
 2.5.1. Disolución de hidrocarburos ... 39
 2.5.2. Solubilidad acrecentada .. 40
 2.5.3. Fase de Petróleo libre .. 41
 2.5.4. Desarrollo de un retículo de petróleo libre en los poros 41
 2.5.5. Retículo tridimensional de kerógeno 42
 2.5.6. Gas a presión ... 43
 2.5.7. Difusión de hidrocarburos .. 43
 2.6. Migración secundaria ... 43
 2.6.1. Mecanismos de desplazamiento 44
 2.6.2. Migración horizontal y vertical ... 44
 2.7. Roca sello o de cobertura .. 45
 2.7.1. Concepto de roca sello o roca de cobertura 45

2.7.2. Tipos de roca sello .. 46
2.7.3. Espesor de las rocas sello o de cobertura 47

2.8. Trampas de petróleo .. 48
 2.8.1. Importancia económica de las trampas 49
 2.8.2. Trampas estructurales ... 50
 2.8.3. Trampas estratigráficas ... 52
 2.8.4. Trampas combinadas ... 54
 2.8.5. Entrampamiento diferencial ... 54

2.9. Fluidos presentes en el yacimiento ... 55
 2.9.1. El gas natural ... 55
 2.9.2. El petróleo ... 56
 2.9.3. El agua ... 57
 2.9.4. Compuestos no hidrocarbonados 58

3. TIPOS DE HIDROCARBUROS EXPLOTADOS 61
 3.1. Características físicas y químicas del petróleo 61
 3.1.1. Color ... 61
 3.1.2. Olor ... 61
 3.1.3. Densidad ... 62
 3.1.4. Sabor ... 63
 3.1.5. Índice de refracción .. 63
 3.1.6. Coeficiente de expansión ... 63
 3.1.7. Punto de ebullición .. 63
 3.1.8. Punto de congelación .. 63
 3.1.9. Punto de deflagraciación .. 64
 3.1.10. Punto de quema ... 64
 3.1.11. Poder calorífico ... 64
 3.1.12. Calor específico ... 64
 3.1.13. Calor latente de vaporización 64
 3.1.14. Viscosidad ... 65
 3.2. Tipos de hidrocarburos explotados ... 66
 3.3. Petróleo ... 67
 3.4. Petróleo ligero (crudo ligero) ... 68
 3.5. Petróleo o crudo dulce ... 69
 3.6. Crudos pesados ... 69
 3.7. Condensado de gas natural .. 70
 3.8. Gas natural ... 70
 3.9. Gas licuado del petróleo - GLP .. 71
 3.10. Arenas bituminosas .. 72
 3.11. Hidratos de gas natural ... 73
 3.12. Hidrocarburos no convencionales ... 74
4. **TÉCNICAS Y MÉTODOS DE EXPLORACIÓN DE HIDROCARBUROS** ... 75

4.1. Métodos de exploración de petróleo ... 75

4.2. Métodos geofísicos de prospección de hidrocarburos 76
 4.2.1. Gravimetría .. 77
 4.2.2. Magnetometría .. 78
 4.2.3. Sismica .. 78
 4.2.4. Geoquímica ... 81
 4.2.5. Sismica. Registro en mar .. 82

4.3. Sondeos de exploración ... 85
 4.3.1. Testigos y registros de lodo ... 85
 4.3.2. Registros eléctricos ... 87
 4.3.3. Registros MWD (Measurements while drilling) 93
 4.3.4. Prueba de producción. Drill Stem Test (DST) 95

5. **REFERENCIAS BIBLIOGRÁFICAS** ... 97
1. FORMACIÓN DE LOS HIDROCARBUROS

1.1. NATURALEZA DEL PETRÓLEO

Un hidrocarburo es un compuesto químico cuyas moléculas están constituidas sólo por átomos de carbono y de hidrógeno, en distintas combinaciones.

La composición elemental del petróleo normalmente está comprendida entre los siguientes intervalos porcentuales:

<table>
<thead>
<tr>
<th>Elementos</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbono</td>
<td>84 - 87</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>11 - 14</td>
</tr>
<tr>
<td>Azufre</td>
<td>0 - 2</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>0,2</td>
</tr>
</tbody>
</table>

El petróleo es una mezcla compleja y homogénea de compuestos orgánicos, principalmente hidrocarburos: alcanos, alquenos, cicloalcanos y compuestos aromáticos. En los yacimientos, ésta sustancia puede estar en estado líquido, sólido o gaseoso.

Muchos investigadores y autores estiman en más de 3.000 el número de compuestos de carbono e hidrógeno que pueden existir en el petróleo. Por tanto, la química del petróleo todavía representa un extenso campo de estudio e investigación. También influye en ello su origen. Allí donde hubo mares someros en épocas pasadas, pudo haber generación:

- **Paleozoico**: 500 millones de años – Argelia, Libia y USA.
- **Mesozoico**: 200 millones de años – Mar del Norte, Oriente Medio, Golfo de Méjico, Brasil, Angola, Aylluendo.
- **Terciario**: 50 millones de años – Egipto, Indonesia, Malasia, Casablanca.

El petróleo y el gas natural se encuentran en formaciones rocosas adecuadas para su almacenamiento, rellenando poros, huecos y fracturas de las rocas.

El petróleo puede ser de color negro, verde, amarillo o marrón.

Allí donde hubo mares someros en épocas pasadas, pudo haber generación:
• Paleozoico: 500 millones de años – Argelia, Libia y USA.
• Mesozoico: 200 millones de años – Mar del Norte, Oriente Medio, Golfo de Méjico, Brasil, Angola, Ayoluengo.
• Terciario: 50 millones de años – Egipto, Indonesia, Malasia, Casablanca.

En condiciones normales es un líquido bituminoso que puede presentar gran variación en diversos parámetros como color y viscosidad (desde amarillentos y poco viscosos como la gasolina hasta líquidos negros tan viscosos que apenas fluyen), densidad (entre 0,66 g/ml y 0,95 g/ml), capacidad calorífica, etc. Estas variaciones se deben a la diversidad de concentraciones de los hidrocarburos que componen la mezcla.

El petróleo líquido puede presentarse asociado a capas de gas natural, en yacimientos que han estado enterrados durante millones de años, cubiertos por los estratos superiores de la corteza terrestre.
1.2. **ORIGEN DE LOS HIDROCARBUROS**

La materia orgánica una vez muerta, no siempre sufre el proceso de descomposición y oxidación a CO_2. Pequeñas cantidades de la misma "escapan" de este ciclo al quedar atrapadas y protegidas entre los sedimentos en medios reductores. Si bien se piensa que estas cantidades preservadas no superan el 1% del total de la materia orgánica generada, a lo largo del tiempo geológico representan cantidades muy importantes. Esta materia orgánica así preservada entre los sedimentos, constituye el origen de los combustibles fósiles: carbón, petróleo y gas natural.

El petróleo y el gas tienen origen orgánico son producto de la materia orgánica contenida en ciertos sedimentos, transformada con el paso del tiempo:

- Los sedimentos arrastrados por los ríos se depositan en los mares, que tienen una vida vegetal y animal más o menos intensa, que genera grandes volúmenes de materia orgánica.
- El conjunto de la biomasa marina de tipo animal, constituido por:
 - Seres vivos de tamaños muy diferentes (peces, reptiles y mamíferos marinos, todos ellos dinosaurios marinos) que han conseguido llegar a un peso del orden de 100 toneladas, pero tan sólo representan una pequeña parte de la biomasa marina animal.
 - La mayor cantidad de biomasa marina, originada por pequeños crustáceos (por ejemplo el krill) y por zooplancton, que sólo puede verse con microscopio.
- El conjunto de la biomasa marina vegetal, constituida por un amplio abanico de especies que van desde algas gigantes espectaculares hasta las algas microscópicas, con frecuencia unicelulares, llamadas fitoplancton.

Todos estos seres vivos marinos, sometidos al ciclo de la vida, caerán al fondo de los océanos, mares o lagunas al morir, quedando mezclados con los sedimentos. La mayoría de esta biomasa orgánica desaparecerá por descomposición: oxidación lenta o rápida, digestión por toda una "cadena alimentaria", cuya última etapa está formada por bacterias.

Pero una parte se conservará, especialmente cuando la biomasa se deposita en medios reductores pobres en oxígeno y pobres en bacterias, produciendo entonces depósitos sedimentarios ricos en materia orgánica. Si bien se piensa que estas cantidades preservadas no superan el 1% del total de la materia orgánica generada, a lo largo del tiempo geológico representan cantidades muy importantes. Es ésta la materia orgánica que constituye el origen de los combustibles fósiles (carbón, petróleo y gas natural).

Los yacimientos de petróleo y gas y provienen de los compuestos químicos (fundamentalmente lípidos, proteínas e hidratos de carbono) existentes en el plancton marino y también en plantas terrestres. La formación de los hidrocarburos (líquidos o gaseosos) a partir de estos restos orgánicos es un largo y lento proceso geológico, cuyo comienzo parece coincidir con épocas geológicas de gran mortalidad, en las que, por alguna razón, desaparecieron del planeta gran cantidad de especies de seres vivos.

El proceso completo consta de varias etapas. En primer lugar se requiere la formación de enormes depósitos de microorganismos y plantas en el fondo de unas aguas tranquilas que faciliten su deposición y eviten su posterior erosión. Lugares favorables para este fenómeno son zonas deltaicas o lacustres con vegetación continental o aguas marinras someras ricas en plancton. Las localizaciones donde se produce el petróleo son aquellas donde hubo una abundante masa de agua y abundantes aportes orgánicos a un entorno o ambiente reductor. Estas zonas pueden ser:

- Lagos: normalmente en un contexto tectónico activo y en zonas ecuatoriales, donde la estratificación de las aguas (por salinidad o densidad) impide la mezcla de las aguas superficiales y profundas.
- Deltas: la roca madre son las lutitas del prodelta, con materia orgánica procedente de vegetales transportados por los ríos y materia orgánica de fito- y zooplancton.
- Cuencas marinas semicerradas con un balance positivo (mayor entrada de agua dulce que de agua salada), y con un modelo de circulación estuarino.
- Cuencas marinas abiertas, en zonas de upwelling, donde se produce una zona de mínimo oxígeno.
- En plataformas y cuencas profundas en periodos de máxima trasgresión.

A continuación dichos restos han de quedar sepultados por sedimentos de grano fino (arenas, arcillas, limos o nuevos depósitos orgánicos). Se crea así un entorno anaerobio que evita su descomposición por oxidación o por la acción de otros organismos que tomen el oxígeno directamente del aire.

Los materiales depositados tienen inicialmente hasta un 80% en volumen de agua, pero la continua acumulación de nuevos sedimentos los va compactando y va convirtiendo paulatinamente el inicial ambiente oxidante de los primeros metros en otro exento de oxígeno. En este ambiente anaerobio, determinadas bacterias, que obtienen su energía de las proteínas de estos residuos, toman también el oxígeno de sus hidratos de carbono y sulfatos, rompiendo así sus moléculas y convirtiendo los primeros en sustancias ricas en carbono e hidrógeno y los segundos en SH2, gas que normalmente desaparece por la acción de bacterias aerobias, pero que a veces, como veremos más adelante se puede encontrar residualmente en ciertos yacimientos. El resultado de esta acción bacteriana anaerobia sería así un gas biogénico que después sufrirá diversas transformaciones.
Como se verá más adelante, se entiende por roca madre aquella unidad sedimentaria que ha generado y expulsado suficiente petróleo o gas como para que sea acumulable y explotable de forma económicamente rentable. Generalmente los depósitos antes mencionados son arcillas, que constituirán las "rocas madre" del petróleo y del gas. La materia orgánica se transformará paulatinamente debido a la presión y la temperatura, para producir en primer término el kerógeno, antecesor del petróleo y del gas.

La fase de la transformación química de la materia orgánica en petróleo es quizás la parte menos conocida por los investigadores del mundo del petróleo, precisamente por la gran complejidad del proceso. Este kerógeno se encuentra en ciertas rocas sin que haya sido transformado, por ejemplo, en los esquistos bituminosos. Cuando los sedimentos ricos en kerógeno se ven sometidos a presiones y temperaturas más altas, éste se transforma paulatinamente en petróleo y en gas. Generalmente son rocas oscuras, finamente laminadas y que pueden ser lutitas, carbonatos, margas, rocas carbonosas.

La cantidad de materia orgánica se mide en TOC (%) que es el contenido en carbono orgánico total, o bien por su composición (tipo de materia orgánica). Valores de TOC > 1% son analizables porque dan lugar a generación de hidrocarburos. Valores comprendidos entre 2,5 y 5% son ideales y superiores a 5% son excepcionalmente buenos. El tipo de materia orgánica y la madurez son datos clave en el inicio de toda investigación de cuencas petroleras.

Evolution of organic material during sedimentation and diagenesis, resulting in two main organic fractions: kerogen and geochemical fossils
1.3. GENERACIÓN DE HIDROCARBUROS A PARTIR DE LA MATERIA ORGÁNICA DE LAS ROCAS MADRE

1.3.1. COMPOSICIÓN QUÍMICA DE LA MATERIA ORGÁNICA EN LOS SEDIMENTOS

La materia orgánica dispersa en los sedimentos consiste en restos de animales y plantas cuyos constituyentes químicos esenciales son las proteínas, hidratos de carbono, lípidos, lignina etc. La proporción de estos constituyentes varía de acuerdo a su pertenencia, según se trate de algas, bacteriasfitoplancton, zooplancton, plantas superiores, etc.

| Constituyentes de plancton marino sobre muestra seca (contenidos en porcentajes) |
|-------------------------------|---------------|-----------|---------------|----------------|
| Organismos | Proteínas | Lípidos | Hidratos de Carbono | Cenizas |
| Diatomeas | 24-48 | 2-10 | 0-31 | 30-59 |
| Dinoflagelados | 41-48 | 2-6 | 6-36 | 12-77 |
| Copepodos | 71-77 | 5-19 | 0-4 | 4-6 |

| Constituyentes de las membranas de bacterias (contenidos en porcentajes) |
|-----------------------------|----------------|------------|----------------|
| Tipo de bacteria | Proteína | Lípidos | Hidratos de Carbono |
| | Neutros | Fosfolípidos | |
| Micrococcus lysod. | 50 | 9 | 10-20 |
| B. purpura | 50 | 28 | 30 |

1.3.2. CONSTITUYENTES QUÍMICOS ESENCIALES DE LA MATERIA ORGÁNICA

Proteínas
Son polímeros altamente ordenados formados por maduración de aminoácidos. En forma de enzimas catalizan las reacciones bioquímicas que gobiernan los procesos celulares. Son a de más interesantes en procesos biológicos de mineralización actuando como matriz en la formación de caparazones de animales. En medio acuoso y por acción de las enzimas se descomponen en monómeros solubles aminoácidos.

Las proteínas son asimiladas fácilmente por las bacterias. Indirectamente después de morir el organismo, comienza la hidrolisis de las proteínas consumándose ordinariamente en condiciones aeróbicas con una total mineralización durante la cual se forma H₂O, CO₂, NH₃, H₂S, H₂ y CH₄.

En el ambiente anaerobio que se origina en los lodos pueden conservarse productos de descomposición incompleta de las proteínas y de su combinación con otras sustancias. En particular en la condensación de los aminoácidos con hidratos de carbono se forman sustancias que más tarde se transforman en ácidos húmicos.

El proceso de desaminación de los aminoácidos puede dar lugar a la formación de ácidos grasos de bajo peso molecular y la descarboxilación de estos últimos puede acarrear la formación de hidrocarburos. Si se tiene en cuenta también el hecho de que en el petróleo se encuentran compuestos nitrogenados no pueden excluirse del todo a las proteínas entre las fuentes de petróleo primario.
Hidratos de carbono
Forman una parte importante del contenido orgánico de las plantas. Su contribución total a la materia orgánica de los sedimentos debe de ser alta. Los carbohidratos son de carácter muy variado desde compuestos sencillos como los azucares a complejos macromoleculares como la celulosa, almidón, glicógeno, agar, ácido alginico y quitina, sustancia esta última que forma el caparazón de los crustáceos. Los carbohidratos más sencillos son solubles y constituyen un excelente sustrato para la alimentación de las bacterias que a su vez sintetizan lípidos.

Las transformaciones de los hidratos de carbono comienzan ya en el medio acuoso sirviendo de alimento a otros organismos vivos. En los sedimentos en su parte superior aerobia puede mineralizarse por completo incluso la celulosa el más estable de la familia. En condiciones anaerobias fermenta desprendiendo H2O, CO2, H2 Y CH4.

Lípidos
Se trata de una gran variedad de compuestos que incluyen las grasas de animales aceites vegetales y ceras. Se ha observado que la composición química y estructura molecular de los compuestos lípidos, resultan muy próximos a algunos hidrocarburos del petróleo.

Las grasas son esteres de la glicerina y de diversos ácidos grasos. Entre estos últimos se encuentran ácidos saturados y no saturados (hidroxiácidos y cetocácidos) con la longitud de la cadena C12-C20 y con distinto grado de saturación. En la práctica todos los ácidos grasos de las grasas vegetales y animales están estructurados a base de un cadena alifática no ramificada. Cantidad muy pequeñas de algunos representantes de los ácidos ramificados de la serie C9 y C28 fueron separadas de bacterias y de tejidos adiposos de procedencia animal. De algunos microorganismos y hongos se separaron hidroxiácidos macromoleculares con una larga cadena lateral en posición.

La composición de las grasas en las algas del zooplancton y fitoplancton y en las bacterias no se conoce suficientemente. Solo en el caso general puede señalarse que el material graso de las algas marinas y del zooplancton, los ácidos no saturados, predominan considerablemente sobre los saturados. Lo más característico para los lípidos es la existencia en estos en gran cantidad (hasta 35 %) de sustancias no saponificables y cuanto más primitivo es el organismo tanto mayor es la cantidad.

Las ceras a pesar de su alta difusión en la naturaleza no son sino microcomponentes en relación a la masa total de la materia viva. Debido a su pequeña solubilidad en agua así como a su estabilidad química y bacteriana, las ceras cumplen la función de agentes protectores, localizándose en la superficie de las hojas, tallos y el hollejo de los frutos de las plantas, así como en la membrana de las bacterias. Químicamente son una mezcla de esteres de alcoholes macromoleculares y de ácidos organícos monobásicos. En la composición de las ceras entran preferentemente alcoholes primarios C18-C24 de estructura normal con un numero par de átomos de carbono en la molécula. Los ácidos grasos superiores que forman parte de las ceras en la mayoría de los casos también vienen representados por compuestos monobásicos saturados de cadena no ramificada.

Durante mucho tiempo se creyó que los ácidos grasos constituían la principal fuente de petróleo, ya que podían convertirse fácilmente hidrocarburos por simple descarboxilación del grupo ácido.

R - COOH = RH + CO2

Los ácidos grasos de cadena larga son junto con los hidrocarburos los más resistentes a la degradación bacteriana.
1.3.3. TRANSFORMACIÓN DE LA MATERIA ORGÁNICA EN HIDROCARBUROS

La fase de la transformación química de la materia orgánica en petróleo es quizás la parte menos conocida por los investigadores del mundo del petróleo, precisamente por la gran complejidad del proceso.

Diversos autores proponen tres fases perfectamente diferenciadas:

- Diagénesis
- Catagénesis
- Metagénesis.

El kerógeno es la fracción orgánica contenida en rocas sedimentarias que es insoluble en disolventes orgánicos. La parte soluble se define como bitumen.

El peso de los sedimentos compacta paulatinamente los materiales sueltos convirtiéndolos en pizarras. Esta etapa se conoce con el nombre de diagénesis y, debido al consiguiente incremento de presión y temperatura, afecta también al contenido orgánico de la roca que pasa a ser una familia de polímeros.

Una parte del mismo (kerógeno), insoluble en disolventes orgánicos, dará lugar posteriormente a los hidrocarburos y otra menor (bitumen) a otro tipo de compuestos como son resinas y asfaltenos. Tiene lugar generalmente durante los primeros cientos de metros del depósito, cuando las condiciones de presión y temperatura son aún moderadas.

Posteriormente, a medida que aumenta la profundidad del recubrimiento, la presión aumenta, las temperaturas llegan a superar los 100°C y a varios miles de metros de profundidad, reacciones de cracking dan lugar a los hidrocarburos a partir de los polímeros originados en la etapa anterior (catagénesis).

Estos hidrocarburos, que se originan preferentemente entre los 100 y los 175°C, serán tanto más ligeros cuanto más altas sean las temperaturas, de manera que las temperaturas más altas, dentro de este rango, producirían directamente el cracking del kerógeno, dando lugar a una zona de sólo gas, formada esencialmente por CH4 y eventualmente SH2 (metagénesis). Por encima de los 250°C, llegaría a carbonizarse la materia orgánica, formando materiales bituminosos e imposibilitando la formación de hidrocarburos. Como la temperatura de la corteza terrestre varía con la profundidad a razón de unos 3°C cada 100 m, puede deducirse que el petróleo se origina a profundidades de entre 2000 y 6000 m. A menor profundidad la temperatura sería demasiado baja y a más profundidad se generaría gas.
1.3.4. DIAGÉNESIS

Es la fase inicial de transformación de la materia sedimentos. Dentro de esta fase se distinguen tres etapas:

- Degradación bioquímica
- Policondensación
- Insolubilización

Degradación bioquímica.
Se inicia principalmente por la acción bacteriana de la materia formada por el plancton, microorganismos, restos de vegetales superiores etc., que se acumula en el fondo de medios subacuáticos tranquilos, juntamente con...
material inorgánico procedente bien de la erosión, bien de la precipitación química (carbonatos).

La degradación de los biopolímeros puede ocurrir por procesos microbiológicos y no biológicos. Las bacterias existentes en los sedimentos de ambientes subacuáticos realizan la síntesis de sus constituyentes y obtienen la energía necesaria para subsistir, mediante la degradación de los componentes de carbono existentes, a través de la respiración en condiciones aerobias o por fermentación en condiciones anaerobias.

Dado que la nutrición de las bacterias se realiza por osmosis, el material orgánico ha de ser disuelto previamente a través de procesos enzimáticos. Así las proteínas y carbohidratos se hidrolizan suministrando aminoácidos y azucares. Los lípidos y ligninas son más resistentes a este proceso y quedan como residuos.

Los procesos microbiológicos a través de los cuales tiene lugar la degradación de la materia orgánica previamente hidrolizada son ligeramente distintos en función de las características del medio en que tiene lugar la sedimentación. Así no es lo mismo en un medio acuático oceánico que en un medio lacustre.

Aparte de las características propias del material depositado, la columna de agua (profundidad) y la presencia de distintos iones (como por ejemplo el SO₄) ejercen una notable influencia en el mecanismo. La profundidad puede hacer que en las aguas profundas existan ya condiciones anóxicas. El tamaño de grano del sedimento tiene influencia en la libre circulación del oxígeno disuelto y, por tanto, en el establecimiento del límite entre las condiciones aerobias y anaerobias.

De acuerdo con lo indicado, la materia orgánica sedimentada en presencia de bacterias es oxidada a compuestos inorgánicos (mineralización) utilizando el oxidante disponible que proporcione la más alta entalpia libre por mol de compuesto orgánico oxidado. Cuando este oxidante se agota la oxidación continúa utilizando el siguiente más eficiente y así sucesivamente. La secuencia no es tan sencilla ya que como paso intermedio entre la hidrólisis de los biopolímeros a los monómeros, las bacterias son selectivas hacia determinados sustratos y es necesario que se produzca un paso intermedio entre los productos hidrolizados y la generación del sustrato asimilable.

Un tercer aspecto a considerar es la velocidad de sedimentación. Esta limita el período de tiempo que una "unidad" de sedimentos tarda en atravesar una determinada zona biogenética. Claramente se comprende que si esta es baja la degradación aeróbica será grande y menores las posibilidades que tengan los procesos anaeróbicos o los harán menos atractivos dado el carácter "refractario" del residuo.

No todos los constituyentes de acuerdo con su estabilidad presentan el mismo comportamiento. Así los carbohidratos y proteínas se descomponen más fácilmente que los lípidos o los hidrocarburos y como consecuencia existirá una alteración en la composición, con un enriquecimiento relativo en estos últimos componentes.

Esto se ve acrecentado como consecuencia de la incorporación al sedimento de las bacterias que “mueren” y son ricas en estos componentes. Como resumen de esta etapa las sintetizan por una parte los propios componentes celulares que estarán constituidos por componentes vitales del tipo descrito anteriormente y que después de su "muerte" pasaran a engrosar los propios sedimentos. Por otra parte bacterias obtienen energía a través de reacciones de mineralización con intervención de oxígeno (condiciones aerobias) o por intervención del ion sulfato o descomposición (condiciones anaerobias) que proporcionan sulfuro y a veces azufre, CO₂, metano etc.

La actividad bacteriana aeróbica y anaeróbica continúa hasta que se establecen condiciones que impiden o inhiben su existencia. Entre estas condiciones están los ambientes tóxicos por ejemplo el H₂S generado o la presencia de fenoles. El agotamiento de portadores de oxígeno o las características físicas presión y temperatura que se alcanza en el sucesivo enterramiento del sedimento. A consecuencia de ello la degradación raramente alcanza la totalidad de la materia orgánica. La ruptura de "biopolímeros" a "geomonómeros" no es completa. Por otra parte y como anteriormente citadas existen algunos tipos de compuestos que no se hidrulan fácilmente y van a constituir el residuo que se conoce con el nombre de humín o compuestos húmicos.
Policondensación.
Al mismo tiempo que los biopolímeros generan geomonómeros se inicia un proceso que es competitivo con la degradación. Muchas de las moléculas presentes en los organismos “muertos” son muy reactivas químicamente y espontáneamente reaccionan entre sí para dar otro tipo de polímeros con estructuras “al azar”, que son resistentes a la degradación anaeróbica que usualmente es altamente específica.

Estos compuestos denominados “geopolímeros”, relativamente estables, preservan a la materia orgánica, aun en presencia de bacterias.

Existen diferentes clases de polímeros: Ácidos húmicos, Ácidos fúlvicos, “humín”, aunque este último es conocido por algunos autores como Kerógeno y otros reservan el nombre de Kerógeno para el resultante de las últimas fases de la transformación, que es la insolubilización. Otra diferencia que se puede establecer entre humín y Kerógeno es que este resiste al ataque de los ácidos minerales que se realiza para su aislamiento, mientras que en las mismas condiciones el humín se hidroliza. La diferencia entre humín y los ácidos es que estos últimos son solubles en disoluciones de NaOH; y la diferencia entre ácidos húmicos y fúlvicos es que los ácidos húmicos no son solubles en HCL y los fúlvicos sí. Estas propiedades se utilizan para su separación.

Insolubilización.
Podría definir la insolubilización como la última etapa de la diagénesis en la cual tiene lugar, a mayores profundidades, una serie de transformaciones químicas con pérdida de algunos grupos funcionales especialmente los radicales OH. El resultado es una mayor policondensación y reordenamiento macromolecular. Se cree que evoluciona en el sentido:

Ácidos fúlvicos --- Ácidos húmicos ---- Humín

Durante este proceso cabe distinguir dos etapas; Una primera que comprende las primeras decenas de metros de sedimentos y se caracteriza por la pérdida de enlaces peptídicos y disminución de la relación H/C. Una segunda etapa mucho menos conocida, se realiza a mayor profundidad y se traduce en una disminución de la relación H/C, debida principalmente a la eliminación de grupos carboxilo.

Como resultado final de la evolución disminuye asimismo la fracción hidrosoluble de los componentes húmicos y da como resultado final el kerógeno.

A pequeñas profundidades solo existen ligeras cantidades de hidrocarburos producidos a partir de organismos vivos, con ligeras transformaciones en las primeras etapas de la diagénesis. El único hidrocarburo nuevo en esta fase es el metano.

Al aumentar la presión y temperatura, se produce la rotura de los enlaces en algunos componentes heteroatómicos del kerógeno. Se producen cantidades apreciables de CO₂ y H₂O. El petróleo que se genera en esta etapa contiene compuestos heteroatómicos de elevado peso molecular. También puede producirse cierta cantidad de metano.

1.3.5. CATAGENESIS

Al aumentar la temperatura se producen roturas de diversos enlaces dando lugar a hidrocarburos a partir del kerógeno. Un gran porcentaje de hidrocarburos están en el rango C15 - C30 aunque predominan los de medio a bajo peso molecular. Es la principal etapa de formación de hidrocarburos líquidos, acompañados de un porcentaje apreciable de gas.
Si la temperatura sigue aumentando, se produce un fraccionamiento de las cadenas por rotura de enlaces C-C, dando lugar a un incremento en la producción de metano tanto a partir del kerógeno como de los hidrocarburos líquidos generados en etapas anteriores. El kerógeno residual de esta etapa aparece con ligera proporción de H, llegando a ser una materia carbonosa al final de la metagénesis.

1.3.6. METAGÉNESIS

Después de que en la catagénesis se ha producido la eliminación de los componentes más ligeros se efectúa una reorganización estructural en el kerógeno. Durante la metagénesis solo se producen ligeras cantidades de metano provenientes de la transformación del kerógeno. Es, a partir de los hidrocarburos líquidos, previamente formados, como se producen las mayores cantidades de metano, por cracking. ·

Este metano presenta una gran estabilidad frente a la temperatura pudiendo soportar por encima de 550°C. No obstante puede ser destruido químicamente en presencia de azufre, que reacciona con él para formar SH₂. El azufre puede estar presente como S libre, o también formarse por reacción de la materia orgánica con los sulfatos a elevada temperatura.
1.4. CONCEPTOS FUNDAMENTALES SOBRE EL KERÓGENO

1.4.1. CARACTERÍSTICAS DEL KERÓGENO

El kerógeno representa la forma más abundante de carbono organico en la tierra. Puede alcanzar el 80 - 90% de la materia orgánica en rocas que no sean almacén.

Aislando el kerógeno puede estudiarse su composición y estructura por métodos químicos y físicos. Sus características fundamentales son el tipo de núcleos, enlaces y funciones, así como su composición elemental expresada en el contenido de C, H, O.

Representando en un diagrama la relación existente entre el H/C, y el O/C obtenidos en los diferentes análisis realizados sobre muestras de rocas con contenido en materia orgánica, se obtiene el diagrama de Van Krevelen, que se muestra en la figura.

Analizando el diagrama de Van Krevelen se deduce que los diversos tipos de kerógeno se distribuyen en tres zonas fundamentales y que la evolución del kerógeno de una formación, sigue la dirección de las flechas al incrementarse la profundidad. Es lo que se define como camino de evolución de ese kerógeno.

El tipo de roca madre controla el tipo de hidrocarburos que puede generar.
Los tres tipos de kerógeno fundamentales tienen las siguientes características:

Tipo I: Presenta una alta relación H/C y su potencial generador de petróleo y gas es alto. Es generado fundamentalmente a partir de algas o de materia orgánica-enriquecida en lípidos por actividad de microorganismos.

Tipo II: Disminuye la relación H/C así como su potencial generador de petróleo y gas. Deriva de materia orgánica mezcla de fitoplancton, zooplancton y microorganismos (bacterias) depositados en un ambiente reductor.

Tipo III: Kerógeno de bajo H/C y alto O/C que contiene muchos grupos carboxílicos. Es el tipo menos favorable para la generación de petróleo. Se deriva fundamentalmente de plantas continentales. Puede generar cantidades apreciables de gas.
1.4.2. TRANSFORMACIÓN DEL KERÓGENO

Definido el kerógeno como una estructura policondensada formada en unas condiciones de presión y temperatura en las que permanece en equilibrio metaestable, se puede comprender que al variar la profundidad, cambian las condiciones ambientales y el kerógeno evoluciona buscando el equilibrio fundamentalmente a través de la eliminación de grupos funcionales y de los enlaces entre núcleos. Esto origina la formación de compuestos sencillos de medio a bajo peso molecular, CO₂ y H₂O fundamentalmente y un incremento continuo en el contenido de C del kerógeno.

Durante la catagénesis se produce un acusado descenso en el contenido de H y de la relación H/C debido especialmente a la generación de hidrocarburos que se han separado. Durante esta etapa se produce la mayor cantidad de petróleo y el principio de la zona de cracking que genera gas humado con un crecimiento rápido en la proporción de metano.

Por último la metagénesis puede generar hidrocarburos (esencialmente metano) a partir del kerógeno residual o bien a partir de hidrocarburos líquidos, previamente generados, que son craqueados.

En conclusión, la sucesión de las principales etapas en la evolución de la materia orgánica es común a todos los sedimentos. No obstante la cantidad de hidrocarburos, su composición y la profundidad de generación de petróleo o gas puede variar. Los parámetros más importantes que influyen en este proceso son: la naturaleza de la materia orgánica y las relaciones tiempo/temperatura.

El proceso de la formación del petróleo queda esquematizado como una función del incremento de la temperatura a través de la profundidad de la roca madre.
1.4.3. POTENCIAL GENÉTICO DEL KEROGENO

Las etapas de diagénesis, Catagénesis y Metagénesis son comunes a la transformación del kerógeno de una roca generadora potencial en cualquier cuenca sedimentaria, pero sus límites de temperatura así como las cantidades de petróleo generadas dependen de la naturaleza de la materia orgánica y también de la historia térmica del proceso, o mejor dicho, de las relaciones tiempo - temperatura. La importancia de la presión en este proceso de transformación parece ser menor.

A fin de diferenciar las influencias respectivas de la naturaleza del kerógeno en las rocas generadoras y la intensidad de la catálisis, se define y utiliza el parámetro denominado “potencial genético”.

El potencial genético de una roca madre potencial, representa la cantidad de petróleo que el kerógeno es capaz de generar, si fuera sometido a una adecuada temperatura durante un intervalo de tiempo suficiente. Este potencial depende de la naturaleza y abundancia del kerógeno que esta relacionado con la velocidad de sedimentación, condiciones de degradación microbiana y reordenación de la materia orgánica en sedimentos recientes. El potencial genético de roca madre puede ser caracterizado por el tipo de kerógeno, su camino evolutivo, y por la abundancia del mismo. Una evaluación cuantitativa del potencial genético se puede hacer en base a un ensayo normalizado de pirolisis. Este potencial, no se diferencia esencialmente de la cantidad de petróleo y gas obtenida de una pizarra bituminosa por pirolisis, dado que no hay ninguna diferencia fundamental entre una roca madre inmadura y una pizarra bituminosa siempre que la riqueza de materia orgánica sea suficiente.
2. CARACTERÍSTICAS GENERALES DE LOS SISTEMAS PETROLEROS

2.1. LOS SISTEMAS PETROLEROS

En capítulos anteriores, se ha mostrado que los hidrocarburos se forman en una zona de sedimentos elásticos de grano fino. Sin embargo, los yacimientos económicamente explotables de petróleo y gas se encuentran en rocas permeables de grano grueso, donde no existen trazas de materia de origen orgánico. Además, hay que tener en cuenta que el petróleo no se encuentra distribuido de manera uniforme en el subsuelo. Ello implica una migración desde la roca en que inicialmente se formaron (roca madre) hasta el lugar en que finalmente se encuentra el yacimiento (roca almacén).

De esta forma, los hidrocarburos líquidos y gaseosos producidos, que inicialmente estarían dispersos en la roca madre, se moverían a través de los poros y fracturas de la formación, probablemente como un fluido impulsado por la presión generada por el calentamiento del agua intersticial o puede que dispersos en una fase acuosa empujada por el peso de los sedimentos acumulados. Llegarían así a una zona de menor presión, constituida por una roca almacén también porosa y fracturada (arenísca, caliza, dolomía, etc.), a menudo más superficial, donde se produciría finalmente una separación gravimétrica o por capilaridad de los tres fluidos que normalmente coexisten: el gas queda en la parte superior, el petróleo en la zona intermedia y el agua en la parte inferior del depósito.

Se entiende que para que esta acumulación de hidrocarburos en la roca almacén tenga lugar es necesario la existencia en el entorno de la misma de una barrera constituida por una roca sello impermeable (evaporita, pizarra, etc.), que, junto con una adecuada configuración geológica (trampa), bien sea estructural o estratigráfica, impida que la migración de los hidrocarburos continúe hacia la superficie.

De todo lo anterior, se concluye que se requieren al menos cuatro condiciones básicas para que un hidrocarburo se acumule:

- Debe existir una roca permeable de forma tal que bajo presión el petróleo pueda moverse a través de los poros microscópicos de la roca.
- La presencia de una roca impermeable, que evite la fuga del aceite y gas...
hacia la superficie.

- El yacimiento debe comportarse como una trampa, ya que las rocas impermeables deben encontrarse dispuestas de tal forma que no existan movimientos laterales de fuga de hidrocarburos.
- Debe existir material orgánico suficiente y necesario para convertirse en petróleo por el efecto de la presión y temperatura que predomine en el yacimiento.

2.2. ROCA MADRE

Se entiende por roca madre a aquella unidad sedimentaria que ha generado y expulsado suficiente petróleo o gas como para que sea acumulable y explotable de forma económicamente rentable. Este tipo de rocas ha sido suficientemente explicado en capítulos anteriores.

2.3. ROCA ALMACÉN

Por roca almacén se entiende una roca lo suficientemente porosa y permeable como para que pueda almacenar petróleo en cantidad explotable de forma económicamente rentable. Esta roca además ha de ser cerrada y tener alguna relación física con la roca madre, ya sea por una fractura que permita el paso de los hidrocarburos o bien por contacto directo.

Las rocas-almacén son uno de los parámetros más estudiados y mejor conocidos en el mundo del petróleo, dado que revisten una importancia económica considerable.

El conocimiento de las características petrofísicas de un almacén, permite evaluar las reservas de un yacimiento de petróleo y su posible puesta en producción. Los términas "pay sand" o"pay zone" utilizados por los especialistas de petróleo americanos para designar los horizontes productivos, muestran claramente el carácter económico que dan al estudio de los almacenes.

Roca almacén se define a toda roca porosa y permeable, es decir a toda roca que tiene poros, huecos o fisuras y en la que estos están conectados entre sí. Este tipo de rocas permite la circulación de fluidos así como el almacenamiento de hidrocarburos.

El estudio de las rocas-almacén, es más sencillo que el de las rocas-madre, al
limitarse el mismo a la determinación de las características físicas y petrográficas de las rocas, no necesitándose en general realizar estudios químicos de las mismas.

2.3.1. CARACTERÍSTICAS PETROFÍSICAS

La roca almacén ha de cumplir una serie de características de porosidad y permeabilidad que permitan la acumulación y posterior fluencia de los hidrocarburos.

2.3.1.1. Porosidad

La porosidad, se define como el porcentaje del volumen de los poros, huecos o fisuras en relación al volumen total de la roca. La porosidad φ determina la capacidad de almacenamiento y se mide en el porcentaje que representa el volumen de poros respecto al volumen total.

Conviene distinguir entre porosidad total, que se refiere al volumen total de poros, huecos o fisuras que contiene la roca, y porosidad útil o efectiva, que representa el volumen de estos mismos conectados entre sí. Los métodos normales de medida utilizados en el laboratorio, permiten obtener el valor de la porosidad efectiva, que es en realidad, la porosidad que interesa. Por el contrario, los registros sónicos o de densidad obtenidos en los sondeos miden la porosidad total de la roca y no la efectiva.

La porosidad de los almacenes en los yacimientos petrolíferos, varía entre un 5 y un 40 %, siendo la más común, la comprendida entre un 10 y un 25 %. Una apreciación cualitativa de la porosidad, puede ser expresada de la forma siguiente:

<table>
<thead>
<tr>
<th>Porosidad</th>
<th>Rango de Porosidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Despreciable</td>
<td>Entre 0 y 5 %</td>
</tr>
<tr>
<td>Pobre</td>
<td>Entre 5 y 10 %</td>
</tr>
<tr>
<td>Media</td>
<td>Entre 10 y 20 %</td>
</tr>
<tr>
<td>Buena</td>
<td>Entre 20 y 30 %</td>
</tr>
<tr>
<td>Muy buena</td>
<td>Superior a 30 %</td>
</tr>
</tbody>
</table>

2.3.1.2. Permeabilidad

Permeabilidad, es la capacidad de una roca de permitir la circulación de fluidos líquidos o gaseosos a través de la misma. Pero si estos no están conectados entre sí la permeabilidad será nula, independientemente de cuál sea la porosidad de la roca. Depende del tamaño y forma del grano, así como de su grado de compactación. Por lo general un tamaño grande de grano y una forma próxima a la esférica favorecen la permeabilidad. Por el contrario, la presencia de un cemento intergranular, como por ejemplo la arcilla, la disminuye.
Por otra parte, la permeabilidad es una propiedad direccional, cuyo valor depende de la dirección del flujo. Debido a la influencia de la estratificación, suele ser mayor en dirección horizontal que en dirección vertical.

La ley de Darcy viene expresada por la fórmula:

\[Q = \frac{A k}{\mu} \frac{dp}{dx} \]

Donde
- \(Q \) = volumen de fluido de viscosidad
- \(S \) = superficie de la sección de la muestra
- \(dp \) = diferencia de presión entre las dos caras
- \(dx \) = espesor de la muestra
- \(K \) = coeficiente de permeabilidad característico de la roca.

Otra formulación de la Ley de Darcy es:

\[Q = A(k /\mu) - \frac{dP}{dl} \]

donde \(Q \) representa el caudal, \(\mu \) la viscosidad, \(P \) la presión, \(A \) la sección y \(l \) la longitud del tramo considerado (Figura 8B). Se mide en darcys o milidarcys.

La permeabilidad \(k \) se mide en darcys o milidarcys. La permeabilidad es de 1 darcy, cuando 1 cm³ de fluido, de viscosidad 1 centipoise, pasa en 1 segundo a través de una muestra de roca de sección 1 cm² y 1 cm de longitud, bajo una presión diferencial de 1 atmosfera. El darcy, es en la práctica una unidad demasiado grande, utilizándose corrientemente el milidarcy (= 1/1.000 darcys).

Normalmente, se distinguen y se miden, dos tipos de permeabilidad:

- La permeabilidad horizontal o lateral, correspondiente a un flujo de los fluidos paralelamente a la estratificación; y la permeabilidad vertical o transversal, correspondiente a un flujo perpendicular a la estratificación.
- La permeabilidad vertical, es normalmente, inferior a la horizontal, por lo menos en un medio desprovisto de fisuras verticales. Esto, se explica por la presencia, en la mayor parte de los almacenes, de minerales filíticos (arcillas, micas), que se disponen paralelamente a la estratificación.

Una roca con buena permeabilidad corresponde a 100 md o superior, mientras que una roca poco permeable tendría menos de 50 md. La permeabilidad más frecuente de los almacenes que se encuentran en los yacimientos petrolíferos, varía en general, entre 5 y 1.000 milidarcys. Se dan casos de rocas almacén, con permeabilidades de varios darcys, e igualmente existen yacimientos que producen de rocas con permeabilidades medidas netamente inferiores a 5 milidarcys, si bien es verdad, que entonces poseen una macropermabilidad de fisura, como es el caso del almacén de Ain Zalah en Irak. En el caso del campo de Lacq profundo, en Francia, las permeabilidades medidas en la zona productora oscilan entre 0,1 y 3 milidarcys.

2.3.1.3. Relaciones entre Porosidad y Permeabilidad

Aunque en general una roca muy porosa, es igualmente permeable, no siempre se cumple esta relación. Las arcillas consideradas como ejemplo típico de roca impermeable, son por el contrario extremadamente porosas, pudiendo alcanzar el
90 e incluso el 95% de huecos, pero los poros son muy pequeños, y las fuerzas de tensión superficial que se oponen a los movimientos de los fluidos, hacen la roca impermeable.

Si se disponen en un gráfico los valores de permeabilidad medidos sobre muestras de una roca, en función de los valores de porosidad de las mismas muestras, se observa en el mismo una gran dispersión de puntos, lo que indica claramente que no existe una relación directa entre estos dos parámetros. Así tenemos por ejemplo que para un mismo valor de permeabilidad de un 1 md, la porosidad puede variar entre 6 y 15 %. Se observa no obstante una tendencia general de aumento de la permeabilidad conforme aumenta la porosidad.

En ingeniería de explotación de yacimientos, la permeabilidad tiene mucha más importancia que la porosidad. Se han visto a menudo, rocas porosas impregnadas de petróleo, incapaces de producir por falta de permeabilidad. En estos casos es práctica frecuente aumentar la permeabilidad artificialmente por procedimientos de fracturación y acidificación, que abren fisuras nuevas en la roca, o aumentan el tamaño de las preexistentes, facilitando la circulación de fluidos, y por consiguiente permitiendo su explotación.

2.3.1.4. Porosidad Primaria y Secundaria

Desde el punto de vista genético, se reconocen dos tipos de porosidad efectiva: porosidad primaria, y la porosidad secundaria.

La porosidad primaria es adquirida durante el proceso de la sedimentación, mientras que la porosidad secundaria, es el resultado de los fenómenos posteriores a la misma, como la diagénesis y compactación. Una arena cuarcífera, limpia y no cementada, presentará fundamentalmente una porosidad primaria, mientras que una caliza cavernosa y fracturada tendrá principalmente porosidad secundaria.

2.3.1.5. Medidas de la porosidad y permeabilidad

Dentro de un mismo almacén, la porosidad y permeabilidad pueden variar en proporciones importantes de un punto a otro. Debido a ello, para el cálculo de reservas de un yacimiento y su puesta en explotación es importante conocer estas variaciones por lo que hay que realizar cuantas más mediciones de las mismas mejor.

Los métodos que se utilizan para medir las características petrofísicas de las rocas, se pueden agrupar en dos categorías diferentes:

1. Los métodos directos, que se realizan sobre muestras de rocas.
2. Los métodos indirectos, que provienen de la interpretación de registros por cable, realizados en los sondeos.

Las medidas directas, realizadas en el laboratorio, pueden ser muy precisas, pero son efectuadas sobre muestras puntuales, y no son, por tanto, representativas del conjunto de la formación. Un conocimiento válido de la porosidad, no puede conseguirse realmente más que estadísticamente, mediante numerosas medidas realizadas en muestras muy próximas.

Los riesgos de error, pueden proceder del hecho de que la muestra examinada, no está en su medio normal y ha sido sometida a diversos tratamientos, tales como descompresión, lavado, desecación, etc. En el límite, las medidas sobre muestras de roca, no consolidada o poco consolidada, no presentan más que un valor indicativo bastante alejado de la realidad.

En el caso de rocas consolidadas, existe más a menudo una macroporosidad y una permeabilidad debidas a las fisuras y a las cavernas, que se escapan a las medidas de laboratorio, las cuales proporcionan solamente las características de la matriz, siempre inferiores a las características de la roca en su conjunto. Para solucionar en parte este inconveniente, se han perfeccionado aparatos que efectúan las medidas sobre trozos completos de testigos y no sobre los "ripios" de pequeño
Las medidas indirectas, se hacen a partir de los registros de los sondeos (diagramas eléctricos, nucleares, sónicos, etc.). En los casos favorables, proporcionan una idea más completa de las características del conjunto de la formación, basándose no solamente en una muestra, sino en un volumen más o menos importante de la roca alrededor del espacio anular del sondeo. Para un almacén dado, es indispensable una comprobación por comparación con las medidas del laboratorio, a fin de ajustar las interpretaciones.

Durante las etapas iniciales de la prospección petrolífera, anteriores a la perforación de los sondeos, las medidas se efectúan sobre las muestras de rocas obtenidas en superficie. Es necesario no atribuirles otro valor que el indicativo, pues la alteración de superficie, modifica las características de la roca, aumentando los valores (disolución, lavado) o disminuyéndolos (cementaciones superficiales, costras).
2.3.2. TIPOS DE ROCAS ALMACÉN

Toda roca que contenga poros conectados entre sí, puede constituir un buen almacén para los hidrocarburos. En principio existen numerosas rocas, que cumplen estas condiciones. Sin embargo, analizando los niveles productores de los campos petrolíferos descubiertos, se observa que la mayor parte de los almacenes, pertenecen a dos tipos principales:

1. Rocas detríticas: arenas y areniscas, que representarían el 61,7% de los campos y que contienen el 89% de las reservas mundiales (exceptuada Rusia y la actual CEI).
2. Rocas calcáreas: calizas y dolomías, que representan el 32% de los campos y contienen el 40,2% de las reservas mundiales (exceptuada Rusia y la actual CE).

El hecho de que el volumen de las reservas en relación al número de campos sea más importante para las rocas calcáreas que para las rocas detríticas, es debido a que la mayor parte de los gigantescos yacimientos del Oriente Medio, están asociados a almacenes calcáreos.

Las rocas-almacén que no pertenecen a estas dos categorías, se encuentran en el 6,3% de los campos y totalizan solamente el 0,8% de las reservas mundiales. Son principalmente arcillas fracturadas, silexitas ("arcillas silicificadas"), rocas volcánicas ígneas y metamórficas.

2.3.2.1. Almacenes detríticos: arenas y areniscas.

Las rocas detríticas o clásticas, son resultado de la acumulación de elementos arrancados a rocas preexistentes por la erosión, sedimentados "in situ" o transportados a distancias variables por agentes diversos (ríos, glaciares, viento, etc.), cementados o no después de su deposición.

Pueden ser muy diferentes entre sí, separándose en función de la naturaleza mineralógica o petrográfica de los elementos, su tamaño y su forma, su colocación relativa, su compactación, y de la abundancia y naturaleza del cemento. A pesar de esta variedad, la yuxtaposición de elementos sólidos, permite crear espacios huecos entre los granos, lo que confiere a la roca, determinadas características de porosidad y permeabilidad.

En el conjunto de las rocas detríticas, las arenas y las areniscas, se definen por la posición de sus granos en la escala de tamaños.

Desde el punto de vista mineralógico, el elemento dominante es casi siempre el cuarzo, que representa en general más de los 2/3 de la roca. Está acompañado en proporción variable, por otros elementos, bien detríticos (como es el caso de trozos de roca cristalina o volcánica, feldespatos, micas, minerales arcillosos, minerales pesados, calcita, etc.) o bien autógenos (como arcillas, glauconita, pirita, etc.).

Hay diferentes factores litológicos que juegan un papel a menudo muy desigual en las características del almacén; los más importantes, son los factores granulométricos (tamaño, clasificación, forma de los granos) y mineralógicos (presencia de arcilla, cementos).

Tamaño de los granos

El valor del tamaño de los granos sólidos, no ejerce teóricamente efecto en la porosidad de una arena: se puede calcular que la porosidad de un conjunto de esferas de diámetro uniforme, sea cual sea el valor absoluto de su diámetro, es constante e igual al 26% en la agrupación más compacta.

En realidad, se observa que la porosidad es tanto más elevada, cuanto más fina sea la arena. Esto, se explica por el hecho de que las fuerzas de fricción y adhesión, de los granos entre sí, son tanto más elevadas cuanto más finos sean, pues producen la formación de puentes y bóvedas que limitan la compactación y hacen que la arena no alcance su agrupación más compacta.

La permeabilidad, está ligada mucho más estrechamente a las dimensiones
de los granos. El diámetro medio de los poros es del orden de 0,2 veces el diámetro medio de los granos. La permeabilidad depende del tamaño de los huecos donde circulan los fluidos, y será, por tanto, más elevada, cuanto más gruesos sean los granos.

El tamaño de los granos, tiene una influencia importante en las propiedades capilares de las rocas. La superficie específica de los poros en metros cuadrados por metro cúbico del volumen total de una roca-madre, aumenta muy rápidamente, cuando disminuye el diámetro de los granos.

<table>
<thead>
<tr>
<th>Diámetro de los granos (en mm)</th>
<th>Superficie expuesta a los fluidos por m² de volumen total (en m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,661</td>
<td>2.510</td>
</tr>
<tr>
<td>0,417</td>
<td>10.050</td>
</tr>
<tr>
<td>0,104</td>
<td>42.700</td>
</tr>
<tr>
<td>0,050</td>
<td>83.000</td>
</tr>
</tbody>
</table>

En un yacimiento, la superficie de los poros está siempre tapizada por una película de agua, mantenida por las fuerzas de adhesión. Cuanto más finos sean los poros, mayor es el volumen de agua retenido con relación al volumen de petróleo. Desde el punto de vista de la producción, el volumen de petróleo retenido en el almacén por las fuerzas de capilaridad, será en relación al volumen explotado, tanto más elevado cuanto más finos sean los poros.

Como límite, por debajo de un cierto tamaño medio de los granos (muy próximo a la fracción "silt"), el almacén no será productor posible.

Cementación
Aunque existen, sobre todo en las series recientes, almacenes arenosos no consolidados, la mayor parte de los almacenes detríticos, está constituida por areniscas en las que los granos de cuarzo están trabados por un cemento más o menos abundante. En las areniscas, el cemento puede ser:

Silíceo:
Se trata muy a menudo de granos de cuarzo ópticamente orientados, y más raramente, de ópalo o calcedonia. El origen de la sílice, es muy discutido. No es único para todas las areniscas, y puede ser múltiple en un mismo conjunto arenífero. Se han supuesto diversas hipótesis:

- Deposición de la sílice en solución, de las aguas artesianas, que han circulado por la roca.
- Deposición a partir de las aguas cautivas, expulsadas por compactación de los sedimentos arcillosos vecinos.
- Disolución parcial de los granos de cuarzo en sus puntos de contacto, acelerada por la presión debida al recubrimiento, seguida de cristalización en los huecos residuales, donde la presión es menor. Podría haber entonces, cementación por cuarzo, actuando como único intermediario el agua de imbibición de las areniscas, que sería expulsada poco a poco por la cristalización.
- Descomposición de los feldespatos, presentes frecuentemente en las areniscas, con formación de caolinita y liberación de la sílice.

Sea cual sea el origen y los procesos fisicoquímicos que conducen a su precipitación, parece que en una arenisca que presente varios cementos, la sílice, bajo su forma de cuarzo, aparece en primer lugar, y posiblemente, muy pronto después de la sedimentación.

Carbonatado:
Normalmente en forma de calcita, pero a veces de dolomita. Los carbonatos, aparecen tanto en playas en extinción, embalando los granos detríticos, como en cristales aislados, en los huecos entre los granos de cuarzo. El origen de los cementos carbonatados, es igualmente discutido: circulación de aguas cargadas de carbonatos, disolución de restos fósiles y reprecipitación, etc. La dolomita,
Arcilloso:
Aparece en forma de minerales arcillosos, finamente divididos y repartidos entre los granos de cuarzo, o reunidos en lechos y lentejones, que sirven de unión a los granos de cuarzo.

Pueden tener un origen detritico, o ser de neoformación, procediendo entonces de la descomposición "in situ" de los feldespatos y las micas.

Otros minerales:
Si bien estos cementos suelen ser menos frecuentes, la presencia de baritina, anhidrita y pirita, pueden cementar localmente los granos de cuarzo.

De los dos cementos más extendidos (silice y carbonatos), la sílice es la más estable, lo que explicaría el hecho de que, en los terrenos mesozoicos y terciarios, sílice y carbonatos estén en proporciones similares. Sin embargo, en dentro del Paleozoico superior, la sílice representa las tres cuartas partes de los cementos de las areniscas y los carbonatos un cuarto, y en los Paleozoicos inferiores, las cuatro quintas partes de los cementos son sílicos.

El efecto de los cementos que ocupan los huecos que existen entre los granos de cuarzo desde su deposición, es evidente: contribuyen a disminuir a la vez la porosidad y la permeabilidad. Es particularmente importante en las areniscas de grano fino, donde una pequeña disminución del tamaño de los huecos, ya pequeños, puede anular prácticamente la permeabilidad.

Por el contrario, una cementación muy extensa, como en las cuarcitas, hace a la roca más sensible a los fenómenos secundarios de la fisuración. La cementación en las areniscas, cuando no es homogénea, crea barreras locales de permeabilidad contribuyendo a la formación de ciertas trampas. Se ha pensado igualmente, que podía jugar un papel en los fenómenos de la migración de los hidrocarburos, y que sería la causa de las presiones anormalmente elevadas, registradas en algunos yacimientos.

Compactacion
La compactación de las arenas, bajo el peso de los sedimentos durante el proceso de la subsidencia, debería traducirse en una pérdida de porosidad progresiva con la profundidad. Sin embargo, debido a que las arenas se depositan en medios agitados, estas alcanzan muy rápidamente una ordenación textural de los granos lo que les confiere un armazón interno sólido y difícil de ser compactado a profundidades someras.

Se ha observado que para que la porosidad de una arena se reduzca por aplastamiento de los granos de cuarzo, se requieren presiones del orden de varias toneladas por cm², y dado que para alcanzar una presión de 1 Tm/cm² es necesario sobrepasar los 4.000 m de profundidad, la compactación no parece afectar muy sensiblemente las características físicas de los almacenes, sino quizás indirectamente por su acción en la cementación.

2.3.2.2. Almacenes Carbonatados Calizas y Dolomías

Las rocas carbonatadas, comprenden todas las rocas sedimentarias, constituidas en su mayor parte por minerales carbonatados, entre los cuales, los dos principales son la calcita y la dolomita. El aspecto, composición y textura de estas rocas, son muy variables.

Existen todos los términos de transición entre los dos tipos, haciendo difícil el establecimiento de clasificaciones. Esto procede del hecho de que su formación es resultado de acciones variadas, susceptibles de superponerse unas a otras:

1. **Precipitación química "in situ"**, debida a las condiciones del medio (temperatura, concentración de calcio en el agua, presión de CO₂, agitación
del agua, etc.), que da lugar esencialmente, a las calizas finas y compactas, dolomías de textura fina y calizas oolíticas.

II. Precipitación bioquímica, a veces difícilmente separable de la primera, debida a los organismos vivos en las condiciones del medio. Resultan calizas biohermales, formadas por la acumulación en posición de vida, de los esqueletos de los organismos constructores (Pólipos, Algas, Briozoos, etc.), y las calizas bioclásticas, constituidas por la acumulación sobre el fondo marino, de los restos de organismos de caparazón o esqueleto calcáreo, más o menos arrastrados y rodados (calizas coquinoides, lumaquelas, calizas de Foraminíferos, calizas de entronques, etc.).

III. Destrucción de rocas calizas preexistentes, sea cual sea su origen, y sedimentación de los fragmentos, frecuentemente a corta distancia de la fuente del material, debido al hecho de la gran solubilidad de los carbonatos, que no resisten un transporte muy largo (brechas calizas, calcarenitas). Tales rocas, se suelen encontrar ligadas a calizas biohermales, situadas en las proximidades, pero de las que no tienen que quedar necesariamente restos, al haberlas arrasado totalmente los agentes de denudación.

IV. Modificaciones mineralógicas, penecontemporaneas de la sedimentación o más tardías, provocadas por la circulación de aguas cargadas de sales disueltas, y en particular de aguas con iones de Mg (dolomitización) o de silice.

V. Fenómenos de disolución y precipitación, durante la diagénesis o posteriormente a ella, que introducen variaciones en la composición y proporción del cemento existente entre los elementos originales de la roca.

VI. Recristalizaciones parciales o totales bajo el efecto de la circulación de agua, pueden modificar la textura de la roca, y hacer desaparecer a veces totalmente, los restos orgánicos existentes durante la deposición de los sedimentos.

La mayor parte de las rocas carbonatadas, pueden contener hidrocarburos explotables. Sus características de porosidad y permeabilidad, pueden ser de origen primario, pero la mayoría de los yacimientos carbonatados, presentan características secundarias resultantes de fenómenos que actúan sobre la roca, después de su litificación.

2.3.3. POROSIDAD Y PERMEABILIDAD PRIMARIAS

Para las calizas, se pueden aplicar las reglas generales enumeradas para las rocas detríticas, pero la tendencia a la cementación que reduce el volumen y tamaño de los huecos, juega aquí un papel más importante, siendo más fáciles los fenómenos de solución-precipitación en la calcita que en la sílice.

Es posible distinguir diferentes tipos de huecos en las rocas calcáreas, siendo distinto el papel de cada uno en los caracteres del almacén:

a. Poros entre partículas detríticas, o parecidas desde el punto de vista de la textura, a partículas detríticas, conglomeradas y arenas de elementos calizos. (calciruditas y calcarenitas), oolíticas, lumaquelas, calizas de entronques.

b. Poros entre los cristales y según los planos de clivaje de los cristales, calizas cristalinas, sea cual sea el tamaño de los cristales de calcita.

c. Poros a lo largo de los planos de estratificación, debidos a diferencias en el material depositado, y en el tamaño y ordenación de los cristales.

d. Poros en la estructura de los esqueletos de los invertebrados o en el tejido de las algas fósiles.
Las mayores porosidades, aparecen en las calizas coquinoides, donde se suman los huecos de las conchas y los huecos debidos al carácter clástico de la roca (almacén de Pointe-Indienne, Congo). Las calizas oolíticas, proporcionan igualmente buenas porosidades (calizas oolíticas de la cornisa superior del Dogger de la cuenca de Paris), así como las calizas construidas por Pólipos y Algas (calizas productoras del Devónico de Alberta en Canadá).

2.3.4. POROSIDAD Y PERMEABILIDAD SECUNDARIAS

Los poros que confieren a las rocas carbonatadas las características de porosidad y permeabilidad secundarias, y hacen a menudo de estas rocas, excelentes almacenes, pueden agruparse en tres categorías:

a. Aberturas y cavidades de disolución relacionados con la circulación de agua.

b. Poros intergranulares, producidos por modificaciones mineralógicas (dolomitización).

c. Fracturas o fisuras, sea cual sea su origen.

De estas tres categorías, las dos primeras se encuentran casi exclusivamente en las rocas carbonatadas; la tercera, menos específica, puede aparecer en todas las rocas consolidadas. La fisuración, reviste sin embargo toda su importancia, en las rocas carbonatadas, en el sentido de que no solamente participa por sí misma en la creación del almacén, sino que también abre el camino a la circulación subterránea, responsable de la disolución y de una parte de los fenómenos de dolomitización.

Los tres tipos de poros, pueden coexistir en un almacén y superponerse, además, a las características primarias del almacén.
2.4. **MIGRACIÓN DE LOS HIDROCARBUROS**

Se denomina migración al desplazamiento de los hidrocarburos desde las rocas generadoras a través de rocas porosas y permeables hasta los puntos de acumulación que constituyen los yacimientos o campos petrolíferos.

Es un mecanismo fundamental para la acumulación de los hidrocarburos y crítico para su extracción en condiciones rentables, pues el petróleo difuso en las rocas nunca sería explotable comercialmente con las técnicas convencionales.

Deben estudiarse dos tipos de migración:

- Migración Primaria
- Migración Secundaria
2.5. **MIGRACIÓN PRIMARIA. FACTORES Y MECANISMOS**

El mecanismo de migración primaria es el desplazamiento de los hidrocarburos desde la roca-madre en que se generan en forma difusa hasta las rocas porosas y permeables que lo van a transportar hacia otros lugares. Aunque es evidente que la migración primaria es necesaria como primer estadio de la formación de un yacimiento petrolífero, sus detalles son difíciles de determinar, debido a la gran dificultad que hay de experimentar con las condiciones existentes en el interior de la corteza. No obstante, se han determinado ya algunos de los mecanismos más probables de la migración primaria.

Es muy difícil determinar con detalle los mecanismos de la migración primaria, debido sobre todo al desconocimiento detallado de las condiciones en el interior de las cuencas sedimentarias y a la enorme dificultad de experimentar con esas condiciones. No obstante, si hay dos elementos bastante bien conocidos, uno el aumento de presión hidrostática producido por el aumento de profundidad de los sedimentos como consecuencia de la subsidencia, y otro la expulsión del agua intersticial de los poros de los sedimentos de grano fino (arcillas y limolitas) producida precisamente por el aumento de presión. Su efecto combinado, sería la compactación de dichos sedimentos y la liberación de sus fluidos hacia sedimentos de grano grueso, menos compresibles y sometidos a menor presión.

Por tanto, en la migración primaria se dan los siguientes procesos:

- **Compactación**: se pierde porosidad por disminución del volumen de sedimento y por las cementaciones asociadas, así como las recristalizaciones. Todo ello consigue que aumente la presión de fluidos y por tanto se produce un gradiente de presión y de temperatura, generando el desplazamiento de los fluidos hacia zonas más “confortables” (de menor presión y temperatura).
- **Deshidratación de arcillas hinchables**: esto consigue liberar agua a los poros, con lo que aumenta de nuevo la presión intersticial.
- **Cambios químicos de la materia orgánica**: pasamos de kerógeno a petróleo y a gas, aumentando la entropía del sistema, además disminuye el peso molecular de los hidrocarburos (y por tanto el tamaño de la cadena) con lo que la movilidad es mayor y puede incluso aumentar tanto la presión intersticial que cause abundante microfracturación para liberar la presión de los poros.

Dado que los hidrocarburos se generan precisamente en las rocas arcillosas de grano fino, se ha pensado de manera clásica y aun hoy día muchos autores lo defienden, que es ese el mecanismo fundamental de migración primaria del petróleo: la expulsión del agua intersticial, que arrastraría las minúsculas gotas de petróleo recién formado.

Existen serias dudas en cuanto a la efectividad de este mecanismo, pues se ha calculado que cuando se alcanzan las condiciones de generación de hidrocarburos, presión y temperatura en función de la profundidad, la mayor parte del agua intersticial ya ha sido expulsada y, por consiguiente, no queda agua en cantidad
suficiente para producir la expulsión de los hidrocarburos. Sin embargo, esta falta de agua en profundidad podría quedar compensada, al menos parcialmente, por la transformación de montmorillonita en illita.

También se había pensado que esta agua, debido a su menor densidad con relación a las rocas de la cuenca, tendería a desplazarse hacia arriba y hacia los bordes de la cuenca durante la subsidencia arrastrando así a los hidrocarburos. Esto, sin embargo, no es totalmente cierto, pues en las cuencas existen "barreras de permeabilidad" (o cambios de facies a rocas impermeables) tanto verticales como horizontales, así como un aporte continuo de agua meteórica por sus bordes, que impedirían el ascenso del agua profunda. Se puede decir, en resumen, que en una cuenca subsidente, el agua no asciende hasta la superficie, sino que su movimiento predominante es hacia abajo y hacia el centro de la cuenca.

A nivel local, y relativamente, su movimiento es estratigráficamente lateral y vertical hacia arriba, hasta que encuentre una barrera de permeabilidad, y por ello tiene una importancia fundamental en la formación de yacimientos, pero no en la expulsión de petróleo de las rocas madre.

Se puede concluir, que el mecanismo propuesto inicialmente como responsable único de la migración primaria de los hidrocarburos, su arrastre durante la expulsión del agua intersticial, no se debe considerar ya como tal, y que otros mecanismos en los que se está investigando recientemente, pueden tener también su importancia, y ser responsables de dicha migración.

Se piensa que los distintos mecanismos actuarían en distintos momentos y regiones en función de las condiciones locales. En apoyo de ello, está el hecho de la diferencia de composición de los hidrocarburos según su profundidad (complejos, con abundancia de O, N y S, a cada vez más ligeros e incluso metano, al aumentar la profundidad) las regiones y las características litológicas de las formaciones petrolíferas.

Los mecanismos por los que se supone que migran los hidrocarburos son los siguientes:

- **Movimiento en disolución**: parte del petróleo es soluble en agua y por lo tanto podría viajar en disolución con ésta. El problema es que en zonas someras la solubilidad es muy baja y en zonas profundas el tamaño del poro se reduce tanto que dificultaría los procesos de solubilidad.

- **Formación de burbujas de hidrocarburos**: estas burbujas viajarían en inmiscibilidad líquida con el agua.

- **Formación de coloides y micelas de hidrocarburos**: se produce una orientación de las moléculas de los hidrocarburos de tal modo que la parte hidrofóbica quede protegida por la parte hidrofílica en contacto con el agua.

- **Difusión como una fase continua**: el hidrocarburo se mueve aprovechando fracturas, contactos entre formaciones rocosas.
2.5.1. DISOLUCIÓN DE HIDROCARBUROS

Los hidrocarburos, y en particular los gases, son solubles en agua en muy pequeña proporción. En consecuencia, si existiera suficiente cantidad de agua disponible, esta baja solubilidad podría ser un mecanismo suficientemente adecuado para movilizar volúmenes realmente importantes de hidrocarburos.

<table>
<thead>
<tr>
<th>Hidrocarburo</th>
<th>Solubilidad (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benceno</td>
<td>1.780,0</td>
</tr>
<tr>
<td>Tolueno</td>
<td>538,0</td>
</tr>
<tr>
<td>Ciclopentano</td>
<td>156,0</td>
</tr>
<tr>
<td>Ciclohexano</td>
<td>55,0</td>
</tr>
<tr>
<td>Metilciclopentano</td>
<td>42,6</td>
</tr>
<tr>
<td>Metilciclohexano</td>
<td>14,0</td>
</tr>
<tr>
<td>1,2-Dimetilciclopentano</td>
<td>6,1</td>
</tr>
<tr>
<td>2,3-Dimetilbutano</td>
<td>18,4</td>
</tr>
<tr>
<td>3-Metilpentano</td>
<td>12,8</td>
</tr>
<tr>
<td>2-Metilpentano</td>
<td>18,8</td>
</tr>
<tr>
<td>n-Pentano</td>
<td>38,5</td>
</tr>
<tr>
<td>n-Hexano</td>
<td>9,5</td>
</tr>
<tr>
<td>n-Heptano</td>
<td>2,4</td>
</tr>
</tbody>
</table>

| Solubilidad de determinados hidrocarburos en agua (McAulliffe, 1963, 1966) |

El orden de solubilidad disminuye de acuerdo con varios factores:

- Según el tipo de hidrocarburos (aromáticos – nafténicos - parafínicos).
- Según el tamaño de las moléculas (al aumentar el número de C)
- Según las condiciones fisicoquímicas de las rocas como aumento de salinidad, disminución de la temperatura y disminución de presión

![Gráfico de solubilidad de hidrocarburos](image)
Parece que la mayor discontinuidad en el camino de migración ocurre en el contacto arcilla-arena.

En esta interfase se producen cambios abruptos tanto en la salinidad como en la composición de las aguas, de tal modo que en la arcilla habrá aguas saturadas con hidrocarburos disueltas mientras que las aguas más salinas de las arenas adyacentes estarán supersaturadas de hidrocarburos.

Son precisamente estos cambios en las características físicas del almacén los que producirán la ex-solución o separación de los hidrocarburos y el agua al pasar de la roca-madre a la roca-almacén, donde el aumento del tamaño de los poros favorecería los cambios fisicoquímicos, y en particular la disminución de presión y lógicamente su separación.

La escasa solubilidad de los hidrocarburos en agua es una limitación muy fuerte, pues solo los primeros términos de la serie de los hidrocarburos aromáticos, es decir los gases, podrían tener valores importantes. Aun así, la escasa disponibilidad del agua intersticial incluso a profundidades moderadas, es un factor negativo en el mecanismo de la solubilidad. Sin embargo, en el caso del metano biogénico (o "gas de los pantanos") generado a escasa profundidad y baja temperatura, sí podría tener una gran importancia en su movimiento y acumulación.

2.5.2. SOLUBILIDAD ACRECENTADA

Se ha pensado también en otros mecanismos que implican el movimiento junto con los hidrocarburos de otros elementos más solubles que aquellos. Si bien en este caso se seguiría necesitando agua para el transporte, sin embargo, la cantidad requerida de la misma sería en este caso menor.

Para explicar la separación entre las fases petróleo y agua, se sigue acudiendo a los cambios fisicoquímicos que se producen en el contacto arcilla-arena (o roca-madre/roca-almacén). Estos mecanismos son:

Suspensión coloidal:
La suspensión de pequeñas partículas de hidrocarburos en agua se produce en mucha mayor cantidad que si estuvieran disueltas. En estas partículas, que originarían posteriormente las acumulaciones de hidrocarburos, se mantendría el predominio de número par o impar de carbonos tal como existía en la roca-madre, manteniéndose así mismo hasta las etapas finales de formación del yacimiento. En su contra, está el hecho de que se necesita una gran agitación del agua para conseguir esta suspensión, difícil de imaginar en las rocas-madre.

Existencia de "Precursores de Hidrocarburos":
Se ha sugerido por algunos autores, que no son los hidrocarburos los que migran, sino que se trata de precursores del tipo de moléculas de N – S - 0 asociadas a grupos funcionales (ácidos y alcoholes), mucho más solubles, y que en etapas posteriores se transformarían en hidrocarburos. Viajarían pues en disolución, pero sería crítico el momento en que se produjera esta transformación en hidrocarburos pues existiría el riesgo de que se perdieran hacia la superficie sin llegar a formar un yacimiento.
2.5.3. **FASE DE PETRÓLEO LIBRE**

Cuando una roca-madre genera suficiente cantidad de hidrocarburos como para saturar el agua intersticial y cubrir la capacidad de adsorción de la arcilla y de la materia orgánica, se pueden formar pequeñas gotas de petróleo libre en los poros. A medida que el agua es expulsada de las arcillas por compactación, las gotas de petróleo serán arrastradas también hacia los sedimentos de textura gruesa. Este mecanismo solo actuaría, sin embargo, mientras exista suficiente cantidad de agua, y mientras el diámetro de las gotas de petróleo sea menor que el diámetro de los poros.

Si la gota de petróleo se encuentra un estrechamiento de diámetro menor, tiene que deformarse para pasar, lo cual implica un aumento de su superficie y un aumento de las fuerzas de tensión superficial. Sobre cada gota de petróleo, solo actúan dos fuerzas: la gravedad (o flotabilidad), vertical hacia arriba y el gradiente hidrodinámico. El gradiente hidrodinámico es demasiado pequeño para forzar la gota por el estrechamiento, y la componente horizontal de la fuerza de gravedad en la dirección de los poros es también muy pequeña. Se puede concluir, que las gotas de petróleo no pueden atravesar los poros de la arcilla.

Este modelo simple, se puede modificar, sin embargo, si la gota de petróleo atrapa y aísla un cierto volumen de agua, ya que el aumento de temperatura correspondiente al aumento de profundidad, produce un aumento de presión en el agua atrapada, calculado en 1 atmósfera por cada 3 m de enterramiento, y este aumento de presión, si puede ser suficiente para forzar la gota por el estrechamiento.

Para que este mecanismo sea importante, la gota de petróleo debe bloquear el estrechamiento efectivamente, y el volumen de agua aislado debe ser grande en comparación con la gota. El hecho de que en cada estrechamiento se necesita un nuevo proceso de compresión, es quizás demasiado restrictivo para que este mecanismo sea importante.

Si por el contrario se considera toda la capa de arcilla como una única unidad, en la que los estrechamientos de los poros se encuentran en sus bordes por pérdida de porosidad por compactación, se puede considerar que todo su interior está a sobrepresión forzando en consecuencia tanto al agua como al petróleo a salir. En este caso, si se trataría probablemente de un mecanismo mucho más efectivo, pues a la sobrepresión del aumento de temperatura, se sumaría la creada por la generación de hidrocarburos. Se podría producir adicionalmente una microfracturación, que abriría vías adicionales de escape.

2.5.4. **DESARROLLO DE UN RETÍCULO DE PETRÓLEO LIBRE EN LOS POROS**

El desarrollo de una fase separada y continua de petróleo, depende de las cantidades relativas existentes de hidrocarburos y agua. La estimación del volumen efectivo de agua que se hace normalmente no es correcta, porque en los poros de la roca-madre, las superficies de arcilla y de agua adyacente interactúan recíprocamente y de manera fuerte a través de enlaces de hidrógeno. Estos enlaces que se sitúan entre el O de los tetraedros de sílice de las arcillas y el H de las moléculas de agua, orientan ese agua estructurándola fuertemente, con una fuerza que decrece al alejarse de la superficie de la arcilla. En estas condiciones, una molécula aislada de petróleo que se introdujera en un poro, adquiriría la configuración de menor energía, es decir se situaría en su centro, donde la “estructuración” del agua fuera menor. Si una segunda molécula de petróleo penetra en el poro, se puede colocar paralela o alineada con la primera. Y así, sucesivas moléculas de hidrocarburos irían adquiriendo una configuración cada vez más compleja.

En una situación real, las moléculas de hidrocarburos no aparecen repentinamente, sino que se van formando a partir del kerógeno, aunque se encuentren adsorbidas...
inicialmente al kerógeno en forma de película, pueden llegar a constituir un retículo continuo a medida que desplazan el agua menos "estructurada" y se van uniendo entre sí las distintas moléculas generadas.

Este retículo así formado es discontinuo, debido al empaquetamiento irregular de las láminas de arcilla, que producen grandes variaciones en los diámetros de los poros, y a que en los poros de mayor tamaño, puede haber poca cantidad de petróleo para rellenarlos completamente.

Sin embargo, incluso en el estadio de la existencia de un retículo continuo, se necesita una fuerza (por ejemplo, una presión diferencial para producir el movimiento del petróleo fuera de la roca-madre. Recordemos el aumento de temperatura al aumentar la profundidad de enterramiento que producirá la expansión del agua y de cualquier otro fluido en los poros, y que creará una presión interna en las arcillas, que irá aumentando por el proceso de generación del petróleo. El petróleo se movilizará más fácilmente que el agua, incluso aunque el retículo no sea continuo, puesto que el agua "estructurada" tenderá a permanecer quieta. Y así, este mecanismo se considera capaz de formar yacimientos, aunque su eficiencia sea solo del 10% (conviene recordar, asimismo, que el proceso de maduración de la materia orgánica y generación de petróleo, presenta también una eficiencia de orden similar, es decir 10% del kerógeno original).

2.5.5. RETÍCULO TRIDIMENSIONAL DE KERÓGENO

Según este mecanismo, los hidrocarburos generados en una matriz de materia orgánica o kerogénica fluirían a través de ella hacia la roca-almacén, donde las gotas de petróleo o las burbujas de gas, se unirían para desplazarse por gravedad (flotabilidad) hasta la trampa. De acuerdo con ello, los movimientos del petróleo y del agua serían independientes.

El tamaño de las moléculas de kerógeno es mucho mayor que el de las de arcilla, y al compactarse tenderían a unirse, formando una red continua, esencialmente hidrofóbica, ya que las elevadas fuerzas interfaciales de la materia orgánica, impedirían la entrada de moléculas de agua en esta red. El agua se desplazaría exclusivamente por las porciones de roca constituidas por minerales con superficies "mojadas".

El petróleo se desplazaría a través de esta red tridimensional de kerógeno como por una mecha, incluso aunque la permeabilidad fuera muy baja, ya que no existirían fuerzas interfaciales entre petróleo y agua que inhibieran su movimiento. La presión diferencial que habría iniciado el movimiento, provendría de varios orígenes, o de todos a la vez: mayor posibilidad de compactación de las arcillas kerogénicas, expansión volumétrica producida por la formación de petróleo, expansión térmica al aumentar la profundidad de enterramiento y expansión producida por la generación de gas.

Se piensa que la concentración mínima de hidrocarburos libres necesaria para que puedan fluir a través de la red de kerógeno, se sitúa entre el 2,5 y 10%. A su vez, la red de kerógeno en una arcilla, puede ser muy completa en dos direcciones (planos de estratificación), necesitándose entonces un mínimo de conexiones según la tercera dimensión (que aunque escasas pueden ser suficientes) para constituir una red de kerógeno efectiva.

En cuanto al volumen de hidrocarburos libres, la capacidad de generación de una roca depende de su riqueza en kerógeno. Combinando ambos requerimientos mínimos para la existencia de un retículo tridimensional y riqueza en materia orgánica, parece que al disminuir ésta a valores inferiores a 1%, se pierden las interconexiones, se rompe la continuidad del retículo, y aunque se forme petróleo, este no puede fluir.
2.5.6. GAS A PRESIÓN

Este mecanismo se ha propuesto como alternativo al arrastre del petróleo por agua, especialmente si las disponibilidades de agua intersticial son muy pequeñas o inexistentes. Habría que pensar, sin embargo, que este mecanismo solo adquiriría importancia real a grandes profundidades.

2.5.7. DIFUSIÓN DE HIDROCARBUROS

En este mecanismo, no se necesitarían grandes cantidades de agua en movimiento, pues los hidrocarburos se moverían por difusión en una fase acuosa estática hacia los almacenes. Se piensa que su efectividad solo alcanzaría a cortas distancias, y necesitaría ayudas adicionales, como una microfracturación.

2.6. MIGRACIÓN SECUNDARIA

Son las migraciones que sufren los hidrocarburos dentro de la propia roca almacén hasta que llegan a las trampas para formar yacimientos explotables. En concreto, se refiere la migración secundaria al desplazamiento de los hidrocarburos a través de rocas porosas y permeables ("carrier" beds) hasta los puntos de acumulación o trampas. Las principales características de las rocas en que se acumula o "rocas almacén", son la porosidad (o porcentaje de poros en relación al volumen total de roca y que en realidad controla el volumen de hidrocarburos que se pueden almacenar) y la permeabilidad (o facilidad de circulación de los fluidos por la roca y que indica la productividad de una formación).

Sin embargo, a diferencia de la migración primaria, la experimentación de la migración secundaria es más fácil, y así los mecanismos básicos que la controlan, ya eran conocidos hace mucho tiempo.

Ambas, migración primaria y secundaria coexisten en el tiempo, por lo que dichas connotaciones no indican una antecedencia absoluta en el tiempo. Es necesario, no obstante, que ya se haya iniciado el proceso de migración primaria, antes de que comience el de migración secundaria.
Los mecanismos por los que se realiza esta migración son mejor conocidos y demuestran la efectividad del agua, si existe en cantidad suficiente, como impulsora del petróleo de la roca-madre y como iniciadora de la migración secundaria, así como la importancia de la gravedad como fuerza principal que gobierna la migración. Los procesos que se dan son los siguientes:

- **Flotabilidad**: el petróleo menos denso que el agua, tiende a ponerse sobre ésta y dentro del petróleo, la parte gaseosa sobre la líquida.
- **Presión capilar**: en ocasiones impide el movimiento, pero por ósmosis se puede producir la migración.

2.6.1. MECANISMOS DE DESPLAZAMIENTO

El sistema de transporte (o migración) más eficiente, es por gravedad (flotabilidad) en forma de fase continua de petróleo. Así, el petróleo que llega al contacto entre la roca-madre y la roca-almacen, se acumula allí hasta alcanzar un volumen tal que por gravedad se pueda desplazar hasta el techo de la roca-almacen, y una vez allí se mueve siguiendo su buzamiento hasta la trampa. El valor de la columna de petróleo o el volumen necesario para que este inicie su desplazamiento por gravedad depende del tamaño de los poros (diámetro de los estrangulamientos) y de la diferencia de densidad entre el agua y el petróleo.

Este desplazamiento del petróleo por gravedad, se puede considerar instantáneo, en comparación con el desplazamiento del petróleo desde la roca madre. En consecuencia, esta migración secundaria sería intermitente, produciéndose a medida que las sucesivas gotitas individuales de petróleo, expulsadas de la roca-madre, se acumularan en un volumen superior al mínimo necesario para iniciar el movimiento.

La saturación residual de la roca-almacen quedaría limitada a un volumen pequeño, a lo largo del camino por el que se ha realizado el desplazamiento del petróleo, estando el resto saturado de agua. Además, el petróleo solo penetra en los poros más grandes, quedando los más pequeños saturados siempre de agua.

2.6.2. MIGRACIÓN HORIZONTAL Y VERTICAL

Los conceptos de migración horizontal y vertical, tienen un sentido fundamentalmente estratigráfico, y no necesariamente geométrico, aunque frecuentemente horizontal al estratigráfico, coincidan o estén muy próximos. Se denomina migración desplazamiento del petróleo a lo largo de un horizonte paralelamente a sus contactos superiores e inferior. Dicho desplazamiento, que también se podría denominar “migración lateral”, quedaría limitado por la aparición de una trampa intermedia o por la existencia de una “barrera de permeabilidad” que detuviera ese movimiento. La migración vertical, por el contrario, sería el desplazamiento del petróleo en sentido perpendicular a los planos de estratificación. Y en ambos casos, lógicamente hacia arriba por la menor densidad...
Ya se ha visto, que en una cuenca el agua, y en general los fluidos incluyendo los hidrocarburos, tienden a moverse en forma absoluta hacia su interior y hacia abajo. Sin embargo, la existencia de fallas y zonas de fractura, tienden a enlazar las zonas profundas de las cuencas en donde se generan los hidrocarburos, con posibles rocas-almacén situadas en niveles más superficiales.

El petróleo que siguiera este camino, por otro lado, muy frecuente en la mayoría de las cuencas, realizaría primero una migración vertical a lo largo de fracturas hasta almacenes superficiales, a lo largo de los cuales realizaría entonces una migración horizontal o lateral hasta las posibles trampas en las que se acumularía formando yacimientos.

2.7. **ROCA SELLO O DE COBERTERA**

2.7.1. **CONCEPTO DE ROCA SELLO O ROCA DE COBERTERA**

Para que un horizonte almacen, no solamente permita la circulación de los hidrocarburos, sino que los retenga en una trampa, es necesario que esté protegido por un horizonte impermeable que detendrá la migración de los fluidos y protegerá el petróleo y gas de los agentes atmosféricos destructores. Estos horizontes impermeables, se designan con el termino general de rocas de cobertura ("cap-rock", "seal").

A pesar de la importancia considerable que se debe conceder a las cualidades de una cobertura en lo que concierne a la localización y existencia de las acumulaciones, su estudio no parece haber atraido mucho la atención de los geólogos del petróleo, sino a escala regional, para objetivos limitados. Esto, quizás se explica, por el número y variedad de las coberturas posibles, que hace que su estudio sea enfocado muy a menudo, a la escala del yacimiento, más raramente a la escala de la cuenca, y prácticamente nunca bajo un ángulo general.

Sin embargo, el análisis detallado de las cuencas sedimentarias y la historia de su prospección, demuestran a menudo, que si un almacen, productivo en un punto, se encuentra completamente invadido de agua en otro, siendo iguales todas las condiciones de porosidad-permeabilidad y cierre estructural de las trampas, el principal responsable, es una variación lateral de las cualidades de impermeabilidad de la cobertura.
2.7.2. TIPOS DE ROCA SELLO

El papel de las rocas de cobertura es asegurar el sellado de los almacenes, siendo la impermeabilidad, su cualidad principal. No existe roca absolutamente impermeable, pero es suficiente que la impermeabilidad sea muy baja, asegurada solamente por poros de dimensión capilar, para que la roca sea capaz de jugar el papel sellante. Una roca cobertura podrá, por tanto, ser porosa, a condición de que los poros sean de dimensión capilar.

Sin embargo, como se ha visto que la porosidad de fractura es raramente capilar, una buena roca de cobertura, deberá estar desprovista de ella, y por tanto deberá ser resistente a la fracturación, y como consecuencia, plástica.

Estas características de impermeabilidad y plasticidad, se encuentran en diferentes tipos de rocas, principalmente arcillas, ciertos carbonatos y evaporitas.

Las arcillas, o más generalmente las rocas que contienen un alto porcentaje de minerales arcillosos, constituyen la cobertura de la mayor parte de los yacimientos petrolíferos explotados, en particular, en series detríticas. Son a veces, como en el caso de los yacimientos en lentejones areniscosos por ejemplo, inseparables de las rocas generadoras (Formación Frontier, en Wyoming).

La impermeabilidad de las arcillas es resultado de la textura, ordenación de los elementos y la naturaleza mineralógica de la misma. El tamaño de los minerales arcillosos es siempre inferior a 0,005 mm, y el tamaño de los poros, es aún más pequeño. Además, su forma general hojosa permite una ordenación más compacta, disponiéndose los elementos, unos en relación a otros, como las tejas de un tejado, pero que es igualmente muy flexible, confiriendo su plasticidad a la roca.

Si la regularidad de la textura y la ordenación, se rompe por la presencia de otros elementos (cuarzo, calcita) existentes en la arcilla, su carácter impermeable y su plasticidad disminuyen y la calidad de la cobertura empeora. Las margas, que son arcillas con una proporción de 35 a 65 % de calcita, son en general peores sellos que las arcillas puras, y son más sensibles a la fracturación. La presencia de una fracción limosa importante en un conjunto arcilloso, tiene el mismo efecto.

La influencia de la naturaleza de los minerales arcillosos, no es menos importante. Los minerales del grupo de la montmorillonita que reaccionan ante el agua inflándose, aseguran un sellado mejor que la caolinita, que es en general más grande y absorbe una cantidad de agua menor.

De todas formas, la presencia de un nivel arcilloso puro y continuo en el techo de un almacén, no es absolutamente indispensable, siendo suficiente en muchos casos, la aparición en un conjunto arenisoso de una cierta proporción de minerales arcillosos, para asegurar una buena cobertura, y detener la dispersión de los hidrocarburos.

Las rocas carbonatadas suelen presentar sellos de características litológicas muy variadas (arcillas, calizas compactas, margas, evaporitas y sales). Existen, sin embargo, cuencas con sedimentación casi exclusivamente carbonatada, donde la cobertura de los almacenes lo constituyen las propias calizas. Muy a menudo, se trata de calizas más o menos arcillosas y margas. Algunos yacimientos, mucho más raros, están cubiertos por calizas finas compactas. En el campo de Porter (Michigan), una parte de la producción, se obtiene de la caliza Devónica de Dundee, alterada y cubierta por la caliza fina de Rogers City.

Aunque las calizas finas o ciertas crestas ("Austin chalk"), pueden constituir buenas coberturas, son en general poco plásticas y están sujetas a la fracturación, y por tanto, juegan solamente el papel de cobertura en las cuencas de tectónica muy tranquila.

Las evaporitas, y más particularmente la anhidrita, son rocas cobertura, asociadas comúnmente con los almacenes carbonatados. Por su textura cristalina compacta y su plasticidad, las evaporitas ofrecen en general, un sello perfecto, para los hidrocarburos tanto líquidos como gaseosos.

Los yacimientos jurásicos de Arabia, están cubiertos por la anhidrita de Hith. El
almacén calizo de Asmari en Irán e Irak, por la serie evaporítica Terciaria, y en el Sahara, el almacén Cámbico de Hassi Messaoud, está cubierto por la serie salina discordante del Triás.

2.7.3. ESPESOR DE LAS ROCAS SELLO O DE COBERTERA

En las regiones de tectónica tranquila, es suficiente un delgado espesor de roca impermeable, para asegurar una buena cobertera. En Beynes (Francia), donde se realizó el proyecto de almacenamiento subterráneo de Gas, un nivel arcilloso, de solo 7 metros de espesor ha resultado ser suficiente cobertura.

En el campo de Dukhan (Qatar), algunos horizontes productivos están cubiertos y separados por niveles de anhidrita que no sobrepasan en algunos casos los 20 metros, permitiendo un aislamiento perfecto entre almacenes, como lo atestiguan las diferencias de presión y calidad observadas entre los petróleos. Así se observó:

- Almacén A: Petróleo no saturado en gas (GOR 40 m³/m³, densidad petróleo: 0,83)
- Almacén B: Petróleo saturado, "gas-cap" importante (GOR 200 m³/m³, densidad petróleo: 0,81).

Por el contrario, en las regiones fuertemente tectonizadas, en los bordes de cadenas plegadas, donde las coberteras han debido resistir esfuerzos orogénicos muy violentos, se comprueba que solo subsisten, en las numerosas trampas exploradas, los yacimientos bien protegidos por una cobertera potente.

En St. Marcet (Sur de Francia), se han encontrado fisuras impregnadas de petróleo, muy por encima de la zona productiva. Los indicios superficiales, cuya presencia atestigua a menudo la falta de buena cobertera, son más numerosos en las regiones fuertemente tectonizadas.

La cobertera de los yacimientos, no es en realidad totalmente impermeable a los hidrocarburos, y es sobre este principio, sobre el que se basan los métodos de prospección geoquímica o geomicrobiológica de superficie, que tratan de localizar la posición de los yacimientos, estudiando el gas encerrado en las rocas a escasa profundidad bajo la superficie del suelo, o las floras bacterianas que se desarrollan allí donde los hidrocarburos gaseosos son muy abundantes.
2.8. TRAMPAS DE PETRÓLEO

Una *trampa de petróleo* es toda aquella anomalía geológica o estructura existente en la roca almacén que favorece el entrampamiento y la acumulación de hidrocarburos líquidos (petróleo) o gaseosos. La anomalía geológica que primeramente se investigó fue el anticlinal, que presenta una forma convexa hacia el techo, consiguiendo que los fluidos que llegan a ella no puedan escaparse hacia arriba, y queden por tanto entrampados.

Las trampas pueden ser de tres tipos principalmente:

1. **Trampa estratigráfica:**
 a. Primarias: relacionadas con la morfología del depósito y con procesos acaecidos durante la sedimentación (interdigitaciones, acuñamientos, arrecifes, cambios laterales de facies, etc.).
 b. Secundarias: relacionadas con procesos postsedimentarios (cambios diagenéticos –caliza <> dolomía–, porosidades por disolución, discordancias...)

2. **Trampa estructural:** relacionadas con procesos tectónicos o diastrofismo (fallas, cabalgamientos, antiformas, etc.).

3. **Trampas mixtas:** se superponen causas estratigráficas y estructurales (como serían las intrusiones diapíricas).

Según cual sea el mecanismo generador, las trampas se pueden clasificar en:

- **Trampas estructurales**
 - Producidas por plegamiento
 - Anticlinales

- **Trampas Estratigráficas**
 - Acuñamientos
 - Cambios de facies
 - Arrecifes
 - Discordancias

- **Producidas por fallas**
 - Trampa contra falla
 - Estructuras de crecimiento

Algunos ejemplos de trampas de petróleo:
Entre las trampas estructurales se encuentran todos los tipos de anticlinales, fallas y sus combinaciones. Entre las trampas estratigráficas, se encuentran los lentejones, los acuñamientos, los cambios de facies y las discordancias. Se suele distinguir una tercera categoría de trampas, denominadas mixtas, que son generadas en partes iguales por procesos tectónicos y estratigráficos.

Más del 60% de las estructuras de petróleo convencionales que se están explotando en la actualidad corresponden a trampas estructurales de tipo antiforme, y otra estructura importante son las estructuras asociadas a procesos de diapirismo, pues a la hora de hacer campañas de exploración, las masas diapíricas poco densas, son fácilmente localizables por métodos geofísicos. Un conjunto de trampas de petróleo localizadas en un área concreta, recibe el nombre de campo de petróleo y varios campos de petróleo asociados constituyen provincias petrolíferas.

2.8.1. IMPORTANCIA ECONÓMICA DE LAS TRAMPAS

Sin ningún lugar a dudas el mayor número de yacimientos y las reservas más importantes de petróleo y gas, se encuentran asociados a trampas anticlinales.

La existencia de un mayor número de yacimientos en trampas anticlinales podría explicarse por el hecho de que son fáciles de definir en las primeras etapas de investigación (sísmica) y por tanto las primeras que se llegan a perforar (y eventualmente a descubrir un campo) en la mayoría de los países.

Las trampas estratigráficas, por el contrario, se localizan fundamentalmente en etapas ya muy avanzadas de la exploración petrolífera. Es por ello que donde más se han puesto de manifiesto es en países como EE.UU. o Europa Occidental, que se encuentran ya en fases muy maduras de la exploración.

Idealizando la geometría de las trampas, puede verse que ambas, estructural (anticlinal) y estratigráfica (acuñamiento), se pueden representar por dos líneas divergentes hacia abajo, pero que la superficie comprendida entre esas líneas ideales es mucho mayor en el anticlinal que en el acuñamiento y, consecuentemente es mayor también en el anticlinal, la zona de drenaje de petróleo. Así, es lógico pensar que es más fácil la migración de petróleo hacia una trampa anticlinal, y que en estas trampas se va a acumular mayor cantidad de petróleo que en las otras.

Esta idea llevaría al estudio de los parámetros de una trampa y al de su efectividad como tal, es decir como formadora de un campo petrolífero. Este estudio del funcionamiento de los parámetros, puede también proporcionar datos sobre el mecanismo de migración.
2.8.2. TRAMPAS ESTRUCTURALES

Las trampas estructurales se originan por plegamientos o fallas generadas en el terreno. Entre las originadas por plegamientos, la forma anticlinal (Figura 1-A) es la más frecuente y corresponde probablemente a más de la mitad de los yacimientos. El anticlinal puede aflorar a la superficie o estar soterrado. Un fenómeno de erosión en su parte superior, posterior a su formación puede haber limitado la zona productiva a los flancos del anticlinal (Figura 1-B). También puede verse alterado por fallas que vienen a modificar los límites o composición del yacimiento (Figura 1-C). En todo caso, una zona de contacto petróleo-agua o gas-agua rodeará el yacimiento.

La eficacia de las trampas originadas por fallas depende de la estanqueidad del sello que se crea, bien sea por el contacto de dos formaciones diferentes (p. ej. pizarra contra arena) o por la impermeabilidad del material de relleno de la propia falla. Si el contorno estructural proporciona un cierre suficiente, una sola falla recta o curvada (Figura 2-A) puede delimitar el yacimiento. En caso contrario se requieren dos o incluso tres fallas para configurar la trampa (Figura 2-B).
Los yacimientos originados por fallas suelen ser alargados en la dirección de la falla y se caracterizan porque el contacto petróleo-agua o gas-agua no es continuo, sino que se interrumpe en la falla (Figura 3-A y 3-B).
2.8.3. TRAMPAS ESTRATIGRÁFICAS

Las trampas estratigráficas se forman por la deposición o erosión de distintos estratos con diferente porosidad y permeabilidad. Se corresponden por tanto con algún tipo de discordancia estratigráfica.

Una discordancia angular (Figura 4-A) se origina cuando la superficie erosionada de una formación porosa con un cierto buzamiento es recubierta por sedimentos impermeables, dando así lugar a una trampa que suele ser relativamente extensa.

Las arenas acumuladas en antiguos cauces o deltas de río, a menudo encajadas en rocas del tipo de las pizarras (Figura 4-B) conforman cierto tipo de yacimientos caracterizados por una sección transversal convexa en su parte inferior, que discurren en dirección aproximadamente perpendicular a la antigua costa.

De forma parecida, antiguas barras de arena que se originan detrás de las rompientes, pueden posteriormente quedar cubiertas por formaciones impermeables y dar lugar a yacimientos convexos en su parte superior, que discurren paralelamente al antiguo litoral (Figura 4-C).
Tipos de trompas de petróleo en el subsuelo:
1) Estrato formando cuna
2) Estrato paralelo
3) Anticlinal
4) Falla
2.8.4. TRAMPAS COMBINADAS

Existen también trampas combinadas de origen mixto (estructural y estratigráfico).

A este tipo de trampas pertenecen aquéllas asociadas a la intrusión de un domo salino en formaciones sedimentarias (Figura 5). Este fenómeno origina deformaciones de los estratos situados en la parte superior y los flancos del mismo. Como la sal constituye un excelente sello, puede dar lugar a numerosos pequeños depósitos de hidrocarburos.

2.8.5. ENTRAMPAMIENTO DIFERENCIAL

Según las densidades de los fluidos existentes en una cuenca, agua, petróleo y gas, estos se deberán distribuir regionalmente de tal manera que el gas, más ligero, ocupará las trampas topográficamente más altas, el agua más densa, las más bajas, y el petróleo líquido las intermedias. Esta distribución no siempre aparece nítidamente establecida, existiendo numerosos ejemplos en que es justamente a la inversa, es decir que el gas ocupa las trampas más profundas de las cuencas, estando las superficiales ocupadas por agua.

Para explicarlo, Gussow desarrolló en 1954 su teoría del "entrampamiento diferencial" ilustrada con numerosos ejemplos. Partiendo de la generación de los hidrocarburos en las zonas centrales y profundas de las cuencas, estos iniciarian su migración hacia la superficie hasta encontrar la primera trampa donde se acumularían. Allí se produciría una separación de los fluidos por densidades hasta que la llenaran hasta su punto de escape, en que debido al empuje del gas, cada vez más abundante, el petróleo líquido iniciaría una nueva migración hasta la siguiente trampa, donde volvería a repetirse el fenómeno. El estadio final, sería una distribución de los fluidos, contraria a la lógica, con el agua en las trampas más altas y el gas en las más bajas.

FIGURA 5
Además de mostrar diversos esquemas teóricos, Gussow documentó su teoría con varios ejemplos de cuencas de Estados Unidos. Sin embargo, existen otras posibles interpretaciones de este fenómeno: una podría ser que esta separación del petróleo líquido en trampas más superficiales que el gas estaría motivada por una mayor maduración de la materia orgánica en las zonas más profundas de las cuencas y su consecuente transformación en gas. Para explicar por el contrario la existencia de agua en las trampas más superficiales, se podría pensar sencillamente en un proceso de lavado de los almacenes por la entrada de agua meteórica. No obstante, es una buena teoría para explicar la distribución anómala que presentan los fluidos en algunas cuencas, y que permitiría no abandonar la exploración, si en las primeras etapas no se encontrara petróleo en las trampas más altas regionalmente y "más prometedoras".

2.9. FLUIDOS PRESENTES EN EL YACIMIENTO

Los yacimientos no contienen sólo hidrocarburos líquidos y gaseosos, sino que, debido a su origen marino o lacustre, éstos se encuentran más o menos mezclados con una cierta cantidad de agua que en una proporción de hasta un 50% se encuentra retenida en los poros de la roca almacén. También contienen diversos compuestos no hidrocarbonados de distintos orígenes.

2.9.1. EL GAS NATURAL

El metano es el principal componente del gas natural y constituye un 70% o más de la mezcla de fluidos presente en un yacimiento de gas. El resto lo forman hidrocarburos saturados de cadena recta o ramificada (CₙH₂ₙ₊₂) generalmente de entre 1 y 6 átomos de carbono en fase líquida o gaseosa, dependiendo de las condiciones del yacimiento. El gas natural puede encontrarse sólo, en un yacimiento de gas, o asociado a un yacimiento de petróleo. Puede también hallarse de diferentes formas:

- Como gas libre ocupa la parte superior del yacimiento, por encima de agua en un yacimiento de gas o de petróleo en un yacimiento asociado.
- Como gas disuelto en petróleo se encuentra casi siempre en un yacimiento de petróleo. La proporción de gas en disolución dependerá de su composición y de las condiciones de presión y temperatura del yacimiento. Este se considera subsaturado, si todo el gas se encuentra en disolución y saturado si existe un exceso que forma una montera de gas libre en la parte superior del yacimiento (gas cap). Cuando el contenido en gas es relativamente pequeño se utiliza como fuente de energía en el propio campo o se reinyecta para incrementar la presión del yacimiento.
- Como gas disuelto en agua.
- Como gas licuado. Dependiendo de las condiciones de presión y temperatura, los hidrocarburos pueden estar en fase líquida o gaseosa. La figura 6 representa el diagrama de fases para una sustancia pura y para otra formada por dos componentes. En condiciones de muy alta presión y
La densidad del gas se mide en términos relativos respecto a la del aire. Como de acuerdo con la Ley de Avogadro, un mol de gas ocupa siempre el mismo volumen en condiciones normales:

$$d_g = \frac{M_g}{M_a}$$

siendo d_g la densidad relativa del gas y M_g y M_a los pesos moleculares de gas y aire respectivamente.

La producción se expresa en pies cúbicos o metros cúbicos de gas en condiciones normales (14.7 psi y 60°F o 1atm y 20°C) por hora o día.

El comportamiento del gas en función de la presión y temperatura viene descrito por la “ley de los gases perfectos”, ajustada por el factor “Z” que corrige las desviaciones respecto al comportamiento ideal en función de su composición y también de la presión y temperatura.

$$P \cdot V = Z \times n \times R \times T$$

El factor de expansión del gas E_g se define como la relación entre el volumen que ocupa el gas en condiciones normales y el que ocupaba en las condiciones del yacimiento. Es el inverso del llamado factor volumétrico del gas B_g.

2.9.2. EL PETRÓLEO

El petróleo puede estar formado por diferentes tipos de hidrocarburos cada uno de ellos en distinta proporción y por tanto, al igual que el gas, tiene distinta composición y propiedades según el área de donde proceda. La composición del crudo es determinante de los productos que resulten del proceso de refino. Los petróleos de base parafínica contienen principalmente hidrocarburos de la serie alcanos (C_nH_{2n+2}), mientras que los de base nafténica contienen cicloalcanos (C_nH_{2n}). Los hidrocarburos aromáticos, más ligeros, constituidos por uno o varios anillos bencénicos, se encuentran en mayor proporción en los hidrocarburos de base aromática.

Las distintas proporciones en que estos diferentes hidrocarburos forman parte de la composición del crudo se reflejan en su densidad, que en el mundo del petróleo se expresa generalmente en grados API (American Petroleum Institute).
Grados API = (141°/d) - 131°

siendo d la densidad relativa del crudo respecto al agua en condiciones normales. Nótese que a menor densidad corresponden más grados API. El agua a 4°C tiene 10° de densidad API, mientras que la densidad de un crudo puede variar entre 10 y 50° API.

La producción se mide en barriles (1 barril= 159 litros) o metros cúbicos por hora o día.

El color del crudo varía de amarillo a rojo, a veces con tonalidades pardas, siendo más opaco cuanto más pesado. En la transparencia influye también la baja temperatura. Se llama punto de niebla (cloud point) a aquella temperatura en que el crudo se enturbia por la solidificación de algunos hidrocarburos y punto de congelación (pour point) a aquella otra, más baja, en que el crudo deja de fluir.

El petróleo, al igual que ciertas formas de materia orgánica, tiene la propiedad de emitir luz (fluorescencia) si se expone a una radiación ultravioleta. Esta propiedad, que fue una de las razones que indujo a pensar en el origen orgánico del petróleo, se utiliza para detectar la existencia de trazas del mismo en muestras de detritus tomadas del sondeo.

La viscosidad del crudo es función de su densidad, su temperatura y de la cantidad de gas disuelto. Tiene gran influencia en la mayor o menor facilidad con que puede fluir del yacimiento y generalmente se mide en centipoises.

El poder calorífico se puede medir en calorías o en BTU's (British Termal Units) y disminuye a medida que aumenta su densidad. Puede decirse que como media es un 50- 60% superior al del carbón. (1 BTU = 253 cal).

La relación gas-petróleo o GOR (Gas Oil Ratio) es el volumen de gas, libre o en disolución, por cada unidad de volumen de petróleo extraída del yacimiento. Se mide en pies cúbicos de gas por barril de petróleo o en metros cúbicos de gas por metro cúbico de petróleo.

El punto de burbuja (bubble point) está directamente relacionada con el GOR y representa las condiciones de presión y temperatura del yacimiento a las cuales el gas disuelto comienza a liberarse. En general, los crudos más pesados tienen menor capacidad de disolver gas que los más ligeros en iguales condiciones de presión y temperatura.

2.9.3. EL AGUA

Parte del agua que contenían los materiales depositados en el fondo de lagos y mares que dieron origen al yacimiento es desplazada por los sedimentos acumulados posteriormente. Pero otra parte permanece retenida en los poros o intersticios de la formación. Recibe el nombre de agua intersticial, fósil o connata, por tener un origen simultáneo al del yacimiento.

La cantidad de esta agua presente en la formación se denomina saturación de agua S_w. Se determina a partir de testigos tomados de la roca y se expresa como un porcentaje del volumen de poros. Parte de esta agua permanece adherida a las paredes de los poros y no se incorpora al flujo de petróleo y gas por más que éstos fluyan por el yacimiento impulsados por elevados gradientes de presión. Es la denominada saturación de agua irreducible S_wi.

Además de esta agua connata, existe también, por lo general, un agua libre en otras formaciones situadas debajo de las productivas a donde ha ido a parar por efecto de su mayor densidad respecto a los hidrocarburos. Esta agua libre es la que proporciona la necesaria energía para la extracción de los hidrocarburos en algunos yacimientos (water drive reservoirs). Los huecos que dejan vacíos los hidrocarburos al salir por el pozo, son invadidos por esta agua a presión que impulsa nuevos hidrocarburos hacia la superficie.
En las reducidas dimensiones del medio poroso, el equilibrio de los fluidos presentes en el mismo viene influído no sólo por la acción de la gravedad, sino también por fenómenos de capilaridad. De esta forma, como el agua se adhiere más y moja preferentemente a la roca, si observáramos un corte vertical de la formación, tendríamos (Figura 7) en la parte inferior el acuífero con $S_w = 100\%$ y, por encima, una zona de transición en la que la saturación de agua se iría reduciendo hasta llegar a la S_{wi} del yacimiento en la parte superior.

Por ello, no existe una línea o superficie de separación teórica entre la formación productiva y la que contiene agua libre. Lo que se llama contacto petróleo agua (O/W) es de hecho una zona de transición que puede tener desde menos de un metro a más de cien metros de espesor.

La presión capilar de un fluido en un medio poroso representa la fuerza requerida para hacerlo pasar a través de un poro de determinadas dimensiones. Esta fuerza será mayor si el fluido no "moja" las paredes (caso del petróleo) que en el caso del agua en que efectivamente las moja. La presión capilar P_0 representada en la figura 7 es la diferencia entre la presión capilar de los hidrocarburos y la del agua a distintos niveles del yacimiento.

Como puede verse es mayor cuanto mayor es la altura sobre el nivel de agua.

2.9.4. COMPUESTOS NO HIDROCARBONADOS

El azufre o el SH_2 pueden también estar presentes en el yacimiento. La eventual presencia de este último ha de tenerse especialmente en cuenta por su efecto corrosivo sobre los metales y también por su toxicidad. Generalmente asociado al gas natural, impide que éste pueda ser destinado a uso doméstico y requiere un costoso tratamiento para su eliminación.

Otros gases, generalmente sin valor comercial, como nitrógeno, helio y CO_2 pueden también encontrarse en el yacimiento. El nitrógeno podría ser de origen ígneo o provenir del aire atrapado en los sedimentos o incluso de la descomposición de...
compuestos orgánicos nitrogenados. El helio puede proceder de la desintegración de isótopos radiactivos naturales o ser liberado por la propia sustancia orgánica. Si se encuentra en cantidad suficiente es posible su aprovechamiento comercial. El CO₂ puede proceder de rocas carbonatadas (por efecto del calor o de ciertos ácidos sobre las mismas) o de los propios hidrocarburos por oxidación en contacto con aguas mineralizadas o debido a la acción de determinadas bacterias. A veces se reinyecta en el yacimiento a fin de incrementar así la presión en zonas agotadas. Pueden existir también junto con el petróleo, especialmente si se trata de un crudo joven o inmaduro, asteroides y ácidos grasos de origen orgánico.

Por último, y muy a tener en cuenta, existen una serie de compuestos formados por anillos aromáticos y nafténicos de alto peso molecular conteniendo nitrógeno, azufre y oxígeno que se conocen con el nombre genérico de asfaltenos. Proceden de reacciones de oxidación y polimerización durante el proceso de maduración del crudo, no son solubles en disolventes de cadena recta (pantano o heptano) y pueden llegar a constituir hasta un 20 % del mismo. Se encuentran en el crudo en suspensión coloidal junto con otros compuestos (resinas) formados por anillos aromáticos que, en determinadas proporciones, sirven para estabilizar la suspensión. Sin embargo, la rotura de dicha estabilidad por una caída de presión o cualquier otra circunstancia, provoca su deposición en la tubería de producción ocasionando serios problemas.
3. TIPOS DE HIDROCARBUROS EXPLOTADOS

3.1. CARACTERÍSTICAS FÍSICAS Y QUÍMICAS DEL PETRÓLEO

Todos los crudos, ya sean de tipo liviano, mediano, pesado o extra pesado, tienen características y propiedades físicas y químicas que, bien a simple vista o bien mediante análisis en laboratorio, permiten distinguirlos unos de otros.

3.1.1. COLOR

A pesar de que popularmente se le asocia el color negro, existen crudos de colores y tonalidades más variadas como es el caso del color verde, amarillo o marrón. Por transmisión de la luz, los crudos pueden tener color amarillo pálido, tonos de rojo y marrón hasta llegar a negro. Los crudos pesados y extrapesados son negro casi en su totalidad. Crudos con altísimo contenido de cera son livianos y de color amarillo; por la noche al bajar bastante la temperatura tienden a solidificarse notablemente y durante el día, cuando arrecia el sol, muestra cierto hervor en el tanque. El crudo más liviano o condensado llega a tener un color blanquecino, lechoso y a veces se usa en el campo como gasolina cruda.

3.1.2. OLOR

El olor de los crudos es aromático, como en el caso del de la gasolina, el queroseno u otros derivados. Si el crudo contiene azufre suele presentar un olor fuerte y desagradable que recuerda a huevos podridos. Si contiene sulfuro de hidrógeno, los vapores son irritantes, tóxicos y hasta mortíferos.

Para atestiguar la buena o menor calidad de los crudos es común en la industria designarlos como dulces o agrios. Esta clasificación tiene un significado determinante entre petroleros vendedores y compradores de crudos porque inmediatamente enfoca ciertas características fundamentales del tipo de petróleo objeto de posible negociación.
3.1.3. DENSIDAD

Los crudos pueden pesar menos que el agua (crudos livianos y medianos) o tanto o más que el agua (es el caso de los pesados y extrapesados). De ahí que la densidad pueda tener un valor de 0,75 a 1,1. Estos dos rangos equivalen a 57,2 y -3° API.

La densidad específica expresada en grados API (API es la abreviatura de American Petroleum Institute), indica la relación entre el peso específico y la fluidez de los crudos con respecto al agua. La industria petrolera internacional adoptó hace ya más de setenta años la fórmula elaborada por el API en mayo de 1922 y que consiste a su vez en una modificación de las dos fórmulas del químico francés Antoine Baumé (fallecido un siglo antes) desarrolló para comparar la densidad de líquidos más livianos o más pesados que el agua:

\[
\text{Densidad específica} = \frac{140}{130 + n}
\]

\[
\text{Densidad específica} = \frac{145}{145 - n}
\]

En las que “n” representa la lectura en grados indicada por el hidrómetro Baumé inmerso en el líquido, cuya temperatura debe ser 15,5 °C. Por ejemplo, si se sustituye n=10 en la primera ecuación se obtendrá que la gravedad específica =1 corresponde a la del agua; en la segunda ecuación se obtiene gravedad específica = 1,07 mayor que la del agua.

La ecuación general del API es:

\[
\text{API} = \frac{141,5}{\text{Densidad específica}} - 131,5
\]

El hidrómetro API se basa en la densidad o gravedad específica de los crudos con respecto al agua. Un crudo de 10 °API tiene la misma gravedad específica que el agua.

La clasificación de crudos por rango de densidad °API utilizada en la industria de los hidrocarburos, a 15,5 °C (60 °F) es:

- Extrapesados: menos de 16°
- Pesados: menos de 21,9°
- Medianos: entre 22,0° y 29,9°
- Livianos: Por encima de 30°

Los líquidos condensados son producto de condensación de un vapor o del gas natural. En el yacimiento la substancia puede existir en estado gaseoso y su gravedad puede ser bastante alta. Se consideran petrolíneos crudos condensados naturales aquellos hidrocarburos líquidos bajo condiciones atmosféricas, que se caracterizan por estar en estado gaseoso bajo las condiciones originales del yacimiento y no ser obtenidos por procesos de absorción, adsorción, compresión, refrigeración o combinación de tales procesos y que tienen una densidad mayor de 40,9 °API a 15,56 °C (60 °F).

En las negociaciones de compraventa, intercambio, reconstitución y mezcla de crudos, el precio del metro cúbico o del barril de crudo está vinculado a la escala de densidad °API correspondiente. La décima de densidad (°API) se paga aplicando la fracción de precio que corresponda, según la calidad del crudo.
3.1.4. SABOR

El sabor de un crudo es una propiedad que destaca cuando el contenido de sal es bastante alto, lo que hace necesario que el crudo sea tratado adecuadamente en las instalaciones de producción del campo para ajustar el contenido en sal al mínimo (gramos por metro cúbico) aceptable por compradores y refinerías.

3.1.5. ÍNDICE DE REFRACCIÓN

Se define como la relación de la velocidad de la luz al pasar de uno a otro cuerpo. Medido con un refractómetro, los hidrocarburos presentan valores de entre 1,39 y 1,49.

3.1.6. COEFICIENTE DE EXPANSIÓN

Varía entre 0,00036 y 0,00096. (Temperatura, °C por volumen).

3.1.7. PUNTO DE EBULLICIÓN

No es constante. Debido a sus constituyentes varía algo menos que la temperatura atmosférica hasta la temperatura igual o por encima de 300 °C.

3.1.8. PUNTO DE CONGELACIÓN

Varía desde 15,5 °C hasta la temperatura de -45 °C. Dependiendo de las propiedades y características de cada crudo o derivado. Este factor es de importancia al considerar el transporte de los hidrocarburos y las estaciones, principalmente el invierno y las tierras gélidas.
3.1.9. PUNTO DE DEFLAGRACIÓN

Varía desde -12 °C hasta 110 °C. Reacción vigorosa que produce calor acompañado de llamas y/o chispas.

3.1.10. PUNTO DE QUEMA

Varía desde 2 °C hasta 155 °C.

3.1.11. PODER CALORÍFICO

3.1.12. CALOR ESPECÍFICO

Varía entre 0,40 y 0,52. El promedio de la mayoría de los crudos es de 0,45. Es la relación de la cantidad de calor requerida para elevar su temperatura un grado respecto a la requerida para elevar un grado la temperatura de igual volumen o masa de agua.

3.1.13. CALOR LATENTE DE VAPORIZACIÓN

Para la mayoría de los hidrocarburos parafínicos y metilenos acusa entre 70 a 90 kilocalorías/kilogramo o 130 a 160 BTU/libra.
3.1.14. VISCOSIDAD

La viscosidad es una de las características más importantes de los hidrocarburos en los aspectos operacionales de producción, transporte, refinación y petroquímica. La viscosidad, que indica la resistencia que opone el crudo al flujo interno, se obtiene por varios métodos y se le designa por varios valores de medición. El poise o centipoise (0,01 poise) se define como la fuerza requerida en dinas para mover un plano de un centímetro cuadrado de área, sobre otro de igual área y separado un centímetro de distancia entre sí y con el espacio relleno del líquido investigado, para obtener un desplazamiento de un centímetro en un segundo.

La viscosidad de los crudos en el yacimiento puede tener 0,2 hasta más de 1.000 centipoise. Es muy importante el efecto de la temperatura sobre la viscosidad de los crudos, en el yacimiento o en la superficie, especialmente concerniente a crudos pesados y extrapesados.

La **viscosidad relativa** es la relación de la viscosidad del fluido respecto a la del agua. A 20 ºC la viscosidad del agua pura es 1,002 centipoise.

La viscosidad cinemática es equivalente a la viscosidad expresada en centipoises dividida por la gravedad específica, a la misma temperatura. Se designa en Stokes o Centistokes.

Viscosidad Universal Saybolt representa el tiempo en segundos para que un flujo de 60 centímetros cúbicos salga de un recipiente tubular por medio de un orificio, debidamente calibrado y dispuesto en el fondo del recipiente, el cual se ha mantenido a temperatura constante.
3.2. **TIPOS DE HIDROCARBUROS EXPLOTADOS**

- **Hidrocarburos en forma líquida**
 - Petróleo
 - Crudos pesados
 - Condensado de gas natural

- **Hidrocarburos en forma gaseosa**
 - Gas natural
 - Gas licuado del petróleo GLP

- **Hidrocarburos en forma sólida**
 - Betunes y arenas bituminosas
 - Hidratos de gas natural

- **Hidrocarburos no convencionales**

3.3. **PETRÓLEO**

El petróleo está formado principalmente por hidrocarburos, en su mayoría parafinas, naftenos y aromáticos. Junto con cantidades variables de derivados saturados homólogos del metano (CH₄). Su fórmula general es CₙH₂ₙ₊₂.

- **Cicloalcanos o cicloparafinas-naftenos**: hidrocarburos cíclicos saturados, derivados del ciclopropano (C₃H₆) y del ciclohexano (C₆H₁₂). Muchos de estos hidrocarburos contienen grupos metilo en contacto con cadenas parafínicas ramificadas. Su fórmula general es CₙH₂ₙ.

- **Hidrocarburos aromáticos**: hidrocarburos cíclicos insaturados constituidos por el benceno (C₆H₆) y sus homólogos. Su fórmula general es CₙHₙ.

- **Alquenos u olefinas**: moléculas lineales o ramificadas que contienen un enlace doble de carbono (-C=C-). Su fórmula general es CₙH₂ₙ. Tienen terminación -"eno".

- **Dienos**: Son moléculas lineales o ramificadas que contienen dos enlaces dobles de carbono. Su fórmula general es CₙH₂ₙ₋₂.

- **Alquinos**: moléculas lineales o ramificadas que contienen un enlace triple de carbono. Su fórmula general es: CₙH₂ₙ₋₂. Tienen terminación -"ino".

Además de hidrocarburos, el petróleo contiene otros compuestos que se encuentran dentro del grupo de orgánicos, entre los que destacan sulfuros orgánicos, compuestos de nitrógeno y de oxígeno. También hay trazas de compuestos metálicos, tales como sodio (Na), hierro (Fe), níquel (Ni), vanadio (V) o plomo (Pb). Asimismo, se pueden encontrar trazas de porfirinas.

El petróleo se clasifica según su referencia de mercado (origen), su contenido en azufre o su grado API. La gravedad API (del inglés: American Petroleum Institute) es un método de clasificación según la densidad (viscosidad y fluidez) del crudo en comparación con el agua a temperaturas iguales. De esta forma la densidad API es la medida inversa a su gravedad específica respecto al agua.

\[
API = \frac{141.5}{GE a 60 \, ^{°}F} - 131.5
\]

Donde \(GE = \frac{\text{líquido }}{\text{agua}} \)

A pesar que se trata de una cantidad sin peso ni dimensiones, la medida se refiere en "grados" y se mide a través de un densímetro. Un índice superior a 10 implica que el crudo es más liviano que el agua, por lo que flota sobre ella. Según los grados API, se clasifican en:

<table>
<thead>
<tr>
<th>Clasificación de los crudos según su grado API</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 50° API</td>
</tr>
<tr>
<td>Entre 40° y 50° API</td>
</tr>
<tr>
<td>Entre 30° y 39,9° API</td>
</tr>
<tr>
<td>Entre 22° y 29,9° API</td>
</tr>
<tr>
<td>Entre 10° y 21,9° API</td>
</tr>
<tr>
<td>< 9,9° API</td>
</tr>
</tbody>
</table>

Esta clasificación es más práctica que teórica, ya que no toma en cuenta la composición real u otras características del crudo (cómo su contenido en azufre) aparte de su fluidez y viscosidad. Más bien se utiliza para catalogar y establecer el precio del crudo considerando factores que determinan su capacidad para la extracción, transporte y refinación.

Mientras mayor sea la viscosidad del crudo (menor gravedad API) es también más difícil de extraer, transportar y refinar para la obtención de sus derivados.
El crudo ligero o liviano con grado API mayor a 31,1, contiene gran concentración de hidrocarburos de bajo peso molecular, lo cual lo hace fácil de transportar, con este tipo de petróleo se busca para obtener la mayor cantidad de combustible posible en forma de diesel, queroseno y gasolina.

El crudo medio o mediano con grado API entre a 29,9 y 22, contiene concentración media de hidrocarburos de bajo peso molecular, lo cual lo hace fácil de transportar, con este tipo de petróleo se busca para obtener combustible y materias primas para polímeros y parafinas.

El crudo pesado con grado API entre a 21,9 y 10, contiene gran concentración de hidrocarburos de mediano peso molecular, lo cual lo hace complicado de transportar, con este tipo de petróleo se busca para obtener la mayor cantidad de parafinas, polímeros, aceites, combustibles, aceites.

El crudo extrepesado de API iguales o inferiores a 10,0 Grados API, contiene menos concentración de hidrocarburos con mayor peso molecular, lo cual lo hace más pesado y difícil de transportar, con este tipo de petróleo se busca para obtener aceites, parafinas, polímeros y betunes. La faja petrolífera del Orinóco contiene la mayor reserva de crudo extrapesado en el mundo.

<table>
<thead>
<tr>
<th>Tipos de Petróleos y sus características</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petróleos livianos (parafínicos)</td>
</tr>
<tr>
<td>Muy fluidos</td>
</tr>
<tr>
<td>Menos pesados que el agua</td>
</tr>
<tr>
<td>Fáciles de evaporar</td>
</tr>
<tr>
<td>Incoloros</td>
</tr>
</tbody>
</table>

3.4. **PETRÓLEO LIGERO (CRUDO LIGERO)**

El petróleo ligero es el crudo con bajo contenido de ceras. La definición de petróleo ligero y de petróleo pesado es difícil de encontrar, simplemente su clasificación se basa más en razones de orden práctico que teórico.

Dado que los crudos con alta viscosidad son más difíciles de transportar y bombear,
3.5. PETRÓLEO O CRUDO DULCE

El petróleo crudo dulce es un tipo de petróleo que contiene menos del 0,5% de azufre en comparación con un mayor nivel de azufre en el petróleo crudo agrio.

Son las pequeñas cantidades de sulfuro de hidrógeno y de dióxido de carbono lo que le da al crudo un suave sabor dulce y agradable olor. En el siglo XIX, los prospectores utilizaban esas cualidades organolépticas de sabor y olor y probaban en pequeñas cantidades el petróleo para determinar su calidad.

3.6. CRUDOS PESADOS

El crudo pesado y el crudo extra pesado es cualquier tipo de petróleo crudo que no fluye con facilidad. Se le denomina "pesado" debido a que su densidad o peso específico es superior a la del petróleo crudo ligero.

El crudo pesado se ha definido como cualquier licuado de petróleo con un índice API inferior a 20°, lo que significa que su densidad relativa es superior a 0,933. En realidad, el crudo pesado es resultante de una degradación por estar expuesto a las bacterias, el agua o el aire y, consecuentemente, dar lugar a la pérdida de sus fracciones más ligeras, dejando atrás sus fracciones más pesadas. Por ello, la producción, transporte y refinado del crudo pesado presenta problemas especiales en comparación a la del crudo ligero.

La mayor reserva de petróleo pesado en el mundo se encuentra al norte del río Orinoco en Venezuela, la misma cantidad que las reservas convencionales de petróleo de Arabia Saudita, pero se sabe que 30 o más países tienen reservas del mismo tipo. El crudo pesado está estrechamente relacionado con las arenas petrolíferas, la principal diferencia es que las arenas petrolíferas en general, no fluyen en absoluto. Canadá cuenta con grandes reservas de arenas petrolíferas, situadas al norte y al noreste de Edmonton, Alberta.

Las propiedades físicas que distinguen a los crudos pesados de los ligeros incluyen una mayor viscosidad y densidad, así como la composición de peso molecular:

- El petróleo extra pesado de la región del Orinoco tiene una viscosidad de más de 10.000 centipoise (10 Pa·s) y 10° en el índice API.
- Por lo general, se añade un diluyente a distancias regulares de un gasoducto de petróleo pesado a fin de facilitar su circulación.
- Venezuela ha estado experimentando en la Faja del Orinoco un proyecto de inyección alterna de vapor con el que se mejora la viscosidad del crudo, técnica que ha incrementado la tasa de recuperación hasta el 40 por ciento, que anteriormente era del 20 por ciento.
3.7. CONDENSADO DE GAS NATURAL

Se trata de un petróleo líquido en superficie pero que en el fondo del pozo y, en las condiciones de presión y temperatura existentes a esa profundidad, está en forma de gas. A medida que declina la presión de yacimiento, el gas (fluido monofásico) supera la línea del punto de rocío y se transforma en petróleo líquido con una densidad muy ligera (API por encima de 50º). Este crudo o condensado llega a tener un color blanquecino, lechoso y a veces se usa en el campo como gasolina cruda.

Los petróleos con más de 50º API pertenecen en general al grupo de los condensados, entendiendo como condensado el condensado retrogrado de la fase monofásica del gas.

3.8. GAS NATURAL

El gas natural es una de las fuentes de energía no renovable más importantes en la actualidad. Está formado por una mezcla de gases ligeros que se encuentra en yacimientos de petróleo, disuelto o asociado con el petróleo o en depósitos de carbón. Aunque su composición varía en función del yacimiento del que se saca, está compuesto principalmente por metano en cantidades que comúnmente pueden superar el 90 o 95 % y suele contener otros gases como Nitrógeno, Ácido Sulfitríaco, Helio y mercaptanos. Como ejemplo de contaminantes cabe mencionar el gas no-asociado de Kapuni (NZ) que contiene hasta un 49 % de CO2.

Si el gas fuese criogénicamente licuado para su almacenamiento, el dióxido de carbono (CO2) solidificaría interfiriendo con el proceso criogénico. El CO2 puede ser determinado por los procedimientos ASTM D 1137 o ASTM D 1945.

El propano, butano e hidrocarburos más pesados en comparación con el gas natural son extraídos, puesto que su presencia puede causar accidentes durante la combustión del gas natural.

El vapor de agua también se elimina por estos motivos y porque a temperaturas cercanas a la temperatura ambiente y presiones altas, forma hidratos de metano que pueden obstruir los gasoductos.

El gas natural produce mucho menos CO2 que otros combustibles como los...
derivados del petróleo y, sobre todo, que el carbón. Además es un combustible que se quema más limpia y eficazmente. La razón por la cual produce poco CO₂ es que el principal componente, el metano, contiene cuatro átomos de hidrógeno y uno de carbono, produciendo, 2 moléculas de agua por cada una de CO₂, mientras que los hidrocarburos de cadena larga (líquidos) producen sólo una molécula de agua por cada 1 de CO₂.

3.9. GAS LICUADO DEL PETRÓLEO - GLP

El gas licuado del petróleo (GLP) es la mezcla de gases licuados presentes en el gas natural o disueltos en el petróleo. Los componentes del GLP, aunque a temperatura y presión ambientales son gases, son fáciles de licuar, de ahí su nombre. En la práctica, se puede decir que los GLP son una mezcla de propano y butano.

El propano y butano están presentes en el petróleo crudo y el gas natural, aunque una parte se obtiene durante el refinado de petróleo, sobre todo como subproducto de la destilación fraccionada catalítica (FCC, por sus siglas en inglés Fluid Catalytic Cracking).

GLP en refinerías:
Se inicia cuando el petróleo crudo procedente de los pozos petroleros llega a una refinación primaria, donde se obtienen diferentes destilados, entre los cuales se tienen gas húmedo, naftas o gasolinas, queroseno, gasóleos atmosféricos o diésel y gasóleos de vacío.

Estos últimos (gasóleos) de vacío son la materia prima para la producción de gasolinas en los procesos de craqueo catalítico. El proceso se inicia cuando estos se llevan a una planta FCC y, mediante un reactor primario a base de un catalizador a alta temperatura, se obtiene el GLP, gasolinas y otros productos más pesados. Esa mezcla luego se separa en trenes de destilación.

GLP de gas natural.
El gas natural de propano y butano que pueden ser extraídos por procesos consistentes en la reducción de la temperatura del gas hasta que estos componentes y otros más pesados se condensen.

Los procesos usan refrigeración o turboexpansores para lograr temperaturas menores de -40 °C necesarias para recuperar el propano. Por tanto estos líquidos son sometidos a un proceso de purificación usando trenes de destilación para producir propano y butano líquido o directamente GLP.

El GLP se caracteriza por tener un poder calorífico alto y una densidad mayor que la del aire.
3.10. ARENAS BITUMINOSAS

Las arenas de alquitrán, conocidas también como arenas bituminosas, arenas de petróleo, arenas petrolíferas, arenas aceiteras y en Venezuela como petróleo crudo extra pesado, son una combinación de arcilla, arena, agua, y bitumen.

De estas arenas se extrae un bitumen similar al petróleo que posteriormente es convertido en un petróleo crudo sintético o refinado directamente en refinerías especializadas para obtener productos del petróleo.

Debido a su viscosidad, estos depósitos de arenas bituminosas son extraídos usando técnicas de minería a cielo abierto, o bien se les hace fluir hacia pozos por medio de técnicas in situ que reducen la viscosidad del bitumen por medio de vapor y/o solventes. El bitumen contiene en promedio 83,2% de carbón, 10,4% de hidrógeno, 0,94% de oxígeno, 0,36% de nitrógeno y 4,8% de azufre.
3.11. HIDRATOS DE GAS NATURAL

Los hidratos de metano son moléculas de metano en estructuras de moléculas de agua que, bajo las condiciones de presión y temperatura que existen en el talud continental y en las regiones polares (permafrost), se convierten en sustancias solidas cristalinas (hielos de metano). Se encuentran principalmente en los poros de los sedimentos arenosos, donde actúan cementándolos.

En el medio marino se explica su formación de una forma un tanto compleja. El metano que resulta de la descomposición de los organismos vivientes en el agua reacciona con el agua a punto de congelarse formando hidratos que después se depositarán en los fondos marinos. La reacción se produce en condiciones de presión y temperatura particulares.

El hidrato de metano es particularmente inestable. Un metro cubico de hidrato de metano contiene aproximadamente 164 metros cúbicos de gas metano con tan solo 0,84 metros cúbicos de agua. Este "hielo" es altamente inflamable, ya que, si se acerca una llama, libera gas metano que arderá.

Los hidratos de metano constituyen una fuente energética alternativa de gran proyección mundial, con una estimación de reservas que prácticamente duplican las reservas de hidrocarburos convencionales actualmente reconocidas para los recursos energéticos fósiles. Sin embargo, los desarrollos tecnológicos encaminados a permitir su extracción y utilización futura como combustible, de manera similar al petróleo o el gas natural, están todavía en fase de investigación.

Durante su extracción es muy difícil que no se libere metano a la atmósfera, que además de ser combustible, es también un gas de efecto invernadero con un poder diez veces superior al del dióxido de carbono. Esta es una de las razones que han limitado su explotación.
3.12. HIDROCARBUROS NO CONVENCIONALES

Se refiere éste apartado a las importantes cantidades de hidrocarburos (gas natural y petróleo) que se han ido acumulando en ambientes geológicos que difieren de las trampas de hidrocarburos convencionales. Al contrario que éstos últimos, los yacimientos no convencionales presentan otro tipo de características y pueden ser clasificados en las categorías siguientes:

- **“Shale Gas”**, llamado también gas de pizarra, por encontrarse acumulado en el espacio poroso de las lutitas o pizarras, así como en la redes de fracturas y diaclasas.
- **“Shale Oil”**, se trata del petróleo con el mismo tipo de acumulación del shale gas.
- **“Coal Bed Methane”**, gas asociado a las capas de carbón y que se presenta en forma adsorbida sobre las macropartículas carbonosas y en forma de gas libre en el espacio poral y en las micro fracturas del carbón.
- **“Tight Gas”**, gas almacenado en rocas sedimentarias, clásticas o carbonatadas de muy baja permeabilidad.
- **“Gas de Hidratos”**. Aunque ya visto anteriormente, se incluye en esta categoría el gas metano que forma compuestos cristalinos con el agua, generalmente en condiciones de baja presión y temperatura.

De los cinco tipos de yacimientos no convencionales mencionados, ninguno de los recursos de los yacimientos mencionado en quinto lugar como “Gas de Hidratos” ha pasado todavía a la categoría de reservas por no disponerse de la tecnología necesaria para su explotación comercial. Por el contrario, los otros cuatro tipos de yacimientos sí están pasando a las categorías de reservas, cobrando una especial relevancia el que se refiere al “Shale Gas”.
4. TÉCNICAS Y MÉTODOS DE EXPLORACIÓN DE HIDROCARBUROS

4.1. MÉTODOS DE EXPLORACIÓN DE PETRÓLEO

Entre las técnicas de exploración cabe mencionar en primer lugar la más obvia, que es la búsqueda de indicios de hidrocarburos o derivados de los mismos en superficie. Estos afloramientos se dan con cierta frecuencia, pero no significan necesariamente la existencia de un yacimiento explotable en el subsuelo.

Un estudio geológico de superficie, cuando es posible, es esencial para descartar determinadas zonas o delimitar aquellas otras que en principio parezcan de mayor interés para proseguir con nuevos trabajos de exploración. La improbabilidad de que haya existido una roca madre, la inexistencia de una roca almacén o la constatación de que no existe una estructura trampa adecuada aconsejaría encaminar los esfuerzos en otra dirección.

Un estudio geológico detallado del subsuelo no es siempre posible. Tal es el caso de zonas situadas bajo el mar o bajo dunas que ocultan la superficie. En este sentido, la Geología se complementa con la Geofísica, que incluye varios tipos de exploración.

Existen dos métodos básicos de exploración en busca de hidrocarburos:

- Métodos indirectos: por medio de la geofísica.
- Métodos directos: mediante sondeos con recuperación de testigo.

Técnicas de exploración previa

- Están encaminadas a delimitar zonas de mayor o menor interés.
- INDICIOS EN SUPERFICIE
 - ESTUDIO GEOLOGICO
 - GRAVIMETRIA: Varaciones laterales del campo gravitatorio por diferente densidad de las rocas
 - Aérea o terrestre
 - Método barato pero ambiguo (influye la profundidad)
 - Detecta formaciones salinas (baja densidad)
 - MAGNETOMETRIA: Mide la intensidad magnética de las rocas (mayor en las más profundas, de mayor contenido metálico), Anomalía positiva: deformación estructural del subsuelo.

- SÍSMICA:
 - Sísmica de refracción: Mide la velocidad de propagación de las ondas.
 - Sísmica de reflexión: Registra las ondas reflejadas en las discontinuidades del subsuelo:
 - Terrestre: Explosivo o vibradores (emisor) y geófonos (receptor)
 - Marina: Cañones de aire comprimido (emisor) e hidrófonos (receptor)
 - GEOQUÍMICA: Posibles trazas de hidrocarburos en suelo y aguas superficiales o subterráneas.

Normalmente, no se suelen hacer campañas de exploración exhaustivas mediante sondeos y recuperación de testigo, por lo que son los métodos indirectos los que
ganan relevancia a la hora de hacer campañas de prospección. El posterior sondeo, se orienta a la comprobación de resultados, estudio de detalle y obtención de muestras y, en una etapa posterior, aprovechamiento de reservas en su caso.

4.2. MÉTODOS GEOFÍSICOS DE PROSPECCIÓN DE HIDROCARBUROS

Los métodos indirectos, los más usados son:

- Métodos sísmicos de prospección: aún no están muy depurados, pero con las nuevas tecnologías se pueden llegar a delimitar bolsas de petróleo de diámetros de tan sólo 10m y es un método cada vez más utilizado.

- Métodos gravimétricos: la gravimetría se utilizó para encontrar grandes cuerpos diapíricos a los cuales podrían estar asociadas estructuras mixtas, pero el método no resultó muy eficaz.

- Diagrafías: son gráficas de datos que nos indican de forma indirecta, alguna propiedad de los materiales. Para poder obtener estas gráficas continuas, se requiere la existencia de un sondeo y de una sonda que pueda introducirse por el sondeo. Esta sonda puede estar equipada para hacer diagrafías de las siguientes naturalezas:
 - Microgravedad: es empleada para determinar la densidad de los cuerpos atravesados por el sondeo.
 - Radiometría: según la naturaleza de la litología, ésta presentará una curva u otra de actividad radiológica (método de rayos γ), o bien, se puede medir la densidad de la roca al someter a ésta a una fuente de radiactividad (normalmente de Cs), absorbiendo una parte y reflejando otra. La ventaja de éste método frente a los demás tipos de diagrafías, consiste en que el sondeo puede perfectamente estar entubado, mientras que para las demás mediciones, la entubación interfiere con la medición.

- Electricidad: de las propiedades eléctricas de las rocas, dos son las más usuales a la hora de hacer geofísica:
 - Medida del potencial instantáneo.
 - Medida de la resistividad de la roca (permeabilidad eléctrica).
Sonido: mediante el cálculo de la velocidad de propagación de ondas sónicas, lo cual es indicador de la densidad total de la roca y de la consistencia de ésta.

- Contenido en H o método del neutrón: nos da la porosidad de la roca.
- Buzamientos.
- Etc.

La ventaja de los métodos geofísicos de prospección mediante sondeos (diagramas o well-logs) es que su bajo coste, rapidez con que se obtienen los datos, que son continuos a lo largo del registro estratigráfico y que además permite establecer correlaciones de forma bastante sencilla.

4.2.1. GRAVIMETRÍA

La gravimetría se utiliza para detectar áreas con espesor sedimentario basado en la identificación de anomalías gravimétricas. Mide las variaciones laterales del campo de gravedad originadas por las diferencias de densidad entre las rocas. Las formaciones de densidad alta constituyen anomalías positivas y las de densidad baja anomalías negativas. Es un método muy rápido que se realiza mediante vuelos aéreos.

Es especialmente útil en formaciones salinas que se detectan por su baja densidad. Puede hacerse desde tierra o desde el aire, mediante vuelos que cubren amplias zonas. Es un método de relativamente bajo coste, pero que, por influir también la profundidad, proporciona una información ambigua que sólo permite descartar algunas zonas desfavorables y concentrar los esfuerzos exploratorios en aquellas otras que, en principio, presenten un mayor potencial.
4.2.2. MAGNETOMETRÍA

Mide la intensidad magnética de las rocas. A medida que se profundiza en la corteza terrestre, las rocas contienen mayor proporción de minerales metálicos y presentan por tanto un mayor magnetismo. Si en una zona de la superficie encontramos una anomalía magnética positiva, ello puede indicar una deformación estructural del subsuelo que lógicamente habrá afectado también a las rocas sedimentarias que estuvieran encima. Las mismas consideraciones en cuanto a coste y fiabilidad que se hacían para la gravimetría, pueden hacerse con respecto a la magnetometría.

4.2.3. SÍSMICA

Utiliza una fuente sonora (explosión o impacto) efectuada en el terreno, cuya señal se recoge y registra en otros puntos del mismo. Existen dos variantes:

- La sísmica de refracción, que se basa en la medición de la velocidad de propagación de las ondas en los distintos tipos de roca, se utiliza poco.
- La sísmica de reflexión es mucho más fiable y utilizada. Hoy día muy depurados ya que se aplican, mediante la utilización de señales digitalizadas que permiten un reprocesado de eliminación de ruidos y una gran calidad en la interpretación.

Mediante captadores (geófonos), capta y registra el movimiento del suelo que genera la onda reflejada en las distintas discontinuidades existentes en el subsuelo, indicando así la posición de las mismas.

La sísmica marina se basa en el mismo principio con la diferencia de que la fuente de energía son cañones de aire comprimido y los captadores son hidrófonos que registran diferencias de presión.
Funcionamiento de la emisión de señales y recepción por geófonos.

Colocación de los geófonos.
Importancia fundamental del reprocesado

Sísmica. Registro interpretado
4.2.4. GEOQUÍMICA

El análisis químico de muestras de suelo y de aguas superficiales o subterráneas puede presentar trazas de hidrocarburos, aunque no nos aportará demasiada información en cuanto a su profundidad.
4.2.5. **SÍSMICA. REGISTRO EN MAR**
JUAN HERRERA HERBERT (2020). INGENIERÍA DE LA PERFORACIÓN DE POZOS DE PETRÓLEO Y GAS.
VOLUMEN 1: ORIGEN Y CARACTERÍSTICAS DE LOS HIDROCARBUROS.
4.3. **SONDEOS DE EXPLORACIÓN**

Todas las técnicas anteriormente mencionadas sólo sugieren la posibilidad de la existencia o no de un yacimiento de hidrocarburos. Finalmente, la confirmación, delimitación y caracterización de un posible yacimiento requiere ineludiblemente la realización de numerosos sondeos exploratorios, muchos de ellos secos, pero que, a través de registros de pozo y pruebas de producción que se realizan en los mismos, pueden proporcionar una evaluación de la formación que tenemos en el subsuelo mucho más completa y detallada que la que nos ofrece la Geofísica. Ninguno de los resultados obtenidos en estos registros puede considerarse aisladamente como determinante, sino que, al igual que ocurre con la Geofísica, será la comparación ponderada de distintos registros lo que permitirá ratificar o descartar una determinada hipótesis.

Es también necesario tomar ciertas precauciones, porque la propia ejecución del sondeo puede ocultar la presencia de hidrocarburos. En efecto, si la densidad del lodo empleado es excesiva, se produce una filtración hacia la formación que puede obstruir los poros e incluso desplazar los hidrocarburos lejos del pozo.

El objeto principal de un sondeo exploratorio es pues la evaluación de la formación. Para ello se realizan una serie de mediciones o registros (mediciones continuas), que adecuadamente interpretados, permiten valorar las posibilidades de explotación que presentan los distintos estratos. Estos registros efectuados en el pozo (well logs) pueden agruparse en dos categorías diferentes, según se realicen mientras se perfora o bien con posterioridad a que el pozo o una parte del mismo haya sido perforada.

Entre los registros que se realizan simultáneamente con la perforación, cabe mencionar los registros de lodo (mud logging), que analizan los detritus arrastrados por el mismo, y otra serie de medidas (MWD: Measurements While Drilling) que pueden realizar ciertos equipos autónomos situados en el extremo inferior de la sarta. En principio, estos equipos pretenden controlar la desviación, pero, al mismo tiempo pueden medir temperatura y presión de lodo, resistividad y radioactividad natural de la formación.

Entre las pruebas que se realizan en momentos en que está interrumpida la perforación normal pueden mencionarse la extracción de testigos, los registros eléctricos y las pruebas de producción.

4.3.1. TESTIGOS Y REGISTROS DE LODO

Un sondeo permite la extracción de testigos de roca tomados del fondo del sondeo (Figura A) o de las paredes del pozo a distintas profundidades, mediante un cañón especial que se descuelga por el mismo (Figura B).

Su análisis y observación dará información fidedigna de la litología. Es factible igualmente recoger muestras tomadas de los detritus que el lodo de perforación arrastra a la superficie, si bien en este caso será necesario calcular la profundidad de la que proceden a partir de la velocidad ascensional del lodo. El análisis de estas muestras mediante rayos ultravioleta, cromatografía u otro tipo de ensayos puede indicar:

- Cantidades de los distintos gases hídrocarbonados que se han incorporado al lodo de perforación.
- Cantidad de petróleo en el lodo de perforación.
- Cantidad de petróleo y gas en el detritus.
- Formaciones atravesadas, incluida una estimación visual de su porosidad.
4.3.2. REGISTROS ELÉCTRICOS

Incluyen una serie de registros que nos proporcionan unas diagrafías de sondeo con información continua de las distintas formaciones. Esta información incluye aspectos como la litología, porosidad, saturaciones, contactos de fluidos, etc.

Las diagrafías son gráficas de datos que indican de forma indirecta, alguna propiedad de los materiales. Para poder obtener estas gráficas continuas, se requiere la existencia de un sondeo y de una sonda que pueda introducirse por el sondeo. Esta sonda puede estar equipada para hacer diagrafías de las siguientes naturalezas:

- **Microgravedad**: es empleada para determinar la densidad de los cuerpos atravesados por el sondeo.
- **Radiometría**: según la naturaleza de la litología, ésta presentará una curva u otra de actividad radiológica (método de rayos γ), o bien, se puede medir la densidad de la roca al someter a ésta a una fuente de radiactividad (normalmente de Cs), absorbiendo una parte y reflejando otra.
- **Electricidad**: de las propiedades eléctricas de las rocas, dos son las más usuales a la hora de hacer geofísica:
 - Medida del potencial instantáneo.
 - Medida de la resistividad de la roca (*permeabilidad eléctrica*).
- **Sonido**: mediante el cálculo de la velocidad de propagación de ondas sónicas, lo cual es indicador de la densidad total de la roca y de la consistencia de ésta.
- **Contenido en H o método del neutrón**: nos da la porosidad de la roca.
- **Buzamientos**.
- **Etc.**

Se realizan mediante una sonda que se descuelga por el pozo y que está conectada mediante un cable eléctrico a una unidad de registro (wireline logging).

La ventaja de éste método frente a los demás tipos de diagrafías, consiste en que el sondeo puede perfectamente estar entubado, mientras que para las demás mediciones, la entubación interfiere con la medición.

Otra ventaja importante de los métodos geofísicos de prospección mediante sondeos (diagrafías o well-logs) estriba en su bajo coste, rapidez con que se obtienen los datos, que son continuos a lo largo del registro estratigráfico y que
además permite establecer correlaciones de forma bastante sencilla.

Operan basados en uno de los tres principios siguientes:

1. **Resistividad de la formación.**
 Miden la resistividad o conductividad de la formación al paso de una corriente eléctrica emitida entre dos electrodos o generada por inducción. La resistividad depende de la porosidad y del tipo de fluido que contienen los poros. En general las rocas presentan alta resistividad, tanto más alta cuanto mayor es su grado de porosidad. Los hidrocarburos también ofrecen alta resistividad, al contrario que el agua salada que es un buen conductor. También habrá de tenerse en cuenta qué resistividad se está midiendo, según las zonas que abarque el ensayo.

![Diagrama de resistividad](image-url)
INGENIERÍA DE LA PERFORACIÓN DE POZOS DE PETRÓLEO Y GAS.
VOLUMEN 1: ORIGEN Y CARACTERÍSTICAS DE LOS HIDROCARBUROS.
INGENIERÍA DE LA PERFORACIÓN DE POZOS DE PETRÓLEO Y GAS.
VOLUMEN 1: ORIGEN Y CARACTERÍSTICAS DE LOS HIDROCARBUROS.
Como consecuencia de la filtración de lodo a la formación y de la costra o cake adherida a las paredes del pozo puede haber alrededor de la sonda zonas con diferentes resistividades:

- Lodo de perforación: R_m
- Costra de lodo: R_{mc}
- Zona invadida: R_{xo}
- Zona de transición: R_t
- Zona virgen: R_1

En principio, la medición de la resistividad mediante la corriente generada por una sonda que se desciende por el centro del pozo, nos da un resistividad mixta, combinación de R_m, R_{mc}, R_{xo}, R_t y R_1. Para minimizar el efecto de las otras resistividades y que la medición se aproxime más a la resistividad verdadera de la formación R_1, los equipos más antiguos incrementan la distancia entre los dos electrodos (emisor y receptor), a costa de perder definición vertical. Los más modernos realizan medidas focalizadas de mayor alcance, que resultan menos afectadas por el lodo y capas adyacentes. Existen también sondas sobre patín que se apoyan sobre las paredes del pozo, que miden la resistividad de la zona invadida y sólo se ven parcialmente afectadas por la resistividad del cake.

Cuando se utilizan lodos de perforación de base oleosa no conductores, la medición de resistividades por el método descrito hasta ahora se dificulta enormemente. Para estos casos se desarrollaron las sondas de conductividad que registran la conductividad en lugar de la resistividad. En vez de electrodo utilizan un solenoide emisor por el que se hace pasar una corriente alterna que envía a la formación un campo magnético que genera unas corrientes inducidas en la formación. Estas a su vez originan una cierta intensidad de corriente en la bobina del solenoide receptor, intensidad que es proporcional a la conductividad de la formación (induction logging).

Los registros de potencial espontáneo (SP logs) miden las diferencias de potencial en mV entre la formación y la sonda, creadas por la distinta salinidad y resistividad del agua del lodo que se filtra a la roca y del agua de formación. Indican la permeabilidad de la formación, puesto que a una formación impermeable le correspondería un potencial cero.

Los registros SP permiten determinar:

- Capas permeables.
- Límites entre capas.
- Valores de la resistividad del agua de formación (R_w).
- Valores cualitativos del contenido arcilloso de una capa.

Lateroperfiles:
La corriente es enviada al pozo en forma ordenada, es decir, enfocada hacia una zona deseada para obtener mejores niveles de investigación.

Doble - Lateroperfil:
Registra información simultánea de la zona invadida y de la zona no contaminada.

Microperfil y Microlateroperfil:
Son utilizados específicamente para determinar la resistividad de la zona invadida (R_{xo}), logrando así mejores resultados al momento de definir las diferentes capas permeables.

2. **Radioactividad de la formación**
Los registros de rayos Gamma miden la radioactividad natural de la formación. Las pizarras y arcillas contienen normalmente más elementos radiactivos (K, U, Th, etc.) que otras formaciones como pueden ser las areniscas y las calizas.

Los registros de neutrones responden a la cantidad de iones hidrógeno presentes en la formación. En formaciones limpias (sin pizarras ni arcilla) con
poros que contengan agua o petróleo, los resultados se corresponden con la porosidad. Zonas reflejadas en el registro de neutrones como de baja porosidad se corresponden con zonas de pizarras o arcillas de alta radiactividad, por lo que ambos registros suelen ser casi simétricos.

Los registros de densidad miden la densidad de la formación. La sonda emite una radiación gamma que la formación absorbe en mayor o menor proporción según su mayor o menor densidad. Permiten evaluar la densidad de los hidrocarburos y detectar gas o rocas de baja densidad como las evaporitas.

3. Propagación del sonido en la formación
El tiempo que tarda una onda de presión en recorrer una determinada distancia en la formación depende de su litología, porosidad y contenido en fluidos. Un principio muy similar se utiliza para comprobar, después de cementar, si la lechada llena o no el espacio anular entre la tubería de revestimiento y la pared del sondeo. En caso afirmativo el sonido se atenúa más que si ha quedado un espacio vacío.

REGISTROS ELÉCTRICOS:
- Resistividad / conductividad
- Potencial espontáneo (SP logs): Permeabilidad

REGISTROS RADIÁTIVOS:
- Rayos gamma: K, U, Th de arcillas y pizarras dan más radiactividad que arenas y calizas
- Neutrones: Cantidad de H+ (porosidad)

REGISTROS SONICOS (velocidad del sonido)

REGISTROS MWD (desviación, resistividad, radiactividad, P y T)
4.3.3. REGISTROS MWD (MEASUREMENTS WHILE DRILLING)

Son equipos autónomos y de alto coste que inicialmente proporcionaban un control preciso de la desviación en pozos desviados y horizontales.

Posteriormente se ampliaron sus funciones y actualmente proporcionan información en tiempo real sobre presión y temperatura del lodo y también sobre la resistividad y radioactividad natural de la formación. Consisten en un conjunto de sensores y componentes electrónicos y un sistema de transmisión. Todo ello instalado en el interior de un lastrabarrenas especial construido de material no magnético (monel) formado por una aleación de Cu y Ni. Existen dos posibles sistemas de transmisión distintos: mediante pulsaciones de presión a través del lodo o mediante ondas electromagnéticas.

El primer sistema dispone de una pequeña turbina movida por el lodo de barrido que genera suficiente corriente para alimentar los circuitos electrónicos y para operar una válvula de restricción de paso del lodo. La apertura y cierre de esta válvula produce unas variaciones de presión en la corriente de lodo, que son detectadas e interpretadas en superficie de acuerdo a un código binario. Un ordenador se encarga de aislar estas señales de otras posibles fluctuaciones de presión en el lodo, al tiempo que analiza y almacena los datos.

El sistema de transmisión electromagnética utiliza la sarta de perforación como si fuera una enorme antena que emite las señales de un transmisor alimentado por una batería. Estas señales son captadas por otra antena en superficie y, al igual que en el caso anterior, leídas y almacenadas por un ordenador.
Perfiles de Inducción:

- Perfiles de Inducción:
 - Permiten determinar las resistividades de los fluidos que se encuentran en la formación cuando el lodo de perforación usado sea base aceite

Perfiles Gamma Ray:
- Los registros GR permiten determinar:
 - Capas permeables
 - Límites entre capas
 - Contenido de arcillas en las arenas

Perfiles de Densidad:
- Se utilizan principalmente para determinar la porosidad de la formación.
4.3.4. PRUEBA DE PRODUCCIÓN. DRILL STEM TEST (DST)

Es una prueba de alto coste por los equipos y por el tiempo que requiere llevarla a cabo (varias horas o incluso días). Por ello la compañía operadora sólo la utiliza cuando ya tiene prácticamente la certeza de encontrarse ante un yacimiento de hidrocarburos. Consiste básicamente en exponer el yacimiento a una presión reducida o incluso a presión atmosférica para provocar la salida de los fluidos de la formación. Puede hacerse con el pozo sin revestir o ya revestido, previa la ejecución de unas perforaciones en la tubería de revestimiento. Requiere la utilización de uno o varios obturadores de caucho para aislar la zona productiva y la instalación de un complejo equipo de superficie para separar los tres fluidos que fluyen de la formación conjuntamente (agua, petróleo y gas).
5. REFERENCIAS BIBLIOGRÁFICAS

Servicio de Estudios de BBVA (2009) “Potencial futuro de la oferta mundial de petróleo: un análisis de las principales fuentes de incertidumbre”.

UNIVERSIDAD POLITÉCNICA DE MADRID
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS Y ENERGIA
LABORATORIO DE INNOVACIÓN EN TECNOLOGÍAS MINERAS

TECHNICAL UNIVERSITY OF MADRID
SCHOOL OF MINES AND ENERGY
MINING TECHNOLOGIES INNOVATION LABORATORY