Multispectral Vision for Monitoring Peach Ripeness

Herrero Langreo, Ana; Lunadei, Loredana; Lleó García, Lourdes; Diezma Iglesias, Belen y Ruiz-Altisent, Margarita (2011). Multispectral Vision for Monitoring Peach Ripeness. "Journal of Food Science", v. 76 (n. 2); pp. 178-187. ISSN 0022-1147. https://doi.org/10.1111/j.1750-3841.2010.02000.x.

Descripción

Título: Multispectral Vision for Monitoring Peach Ripeness
Autor/es:
  • Herrero Langreo, Ana
  • Lunadei, Loredana
  • Lleó García, Lourdes
  • Diezma Iglesias, Belen
  • Ruiz-Altisent, Margarita
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Food Science
Fecha: Marzo 2011
Volumen: 76
Materias:
Palabras Clave Informales: computer vision;firmness;fruit;postharvest;ripeness.
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Ingeniería Rural [hasta 2014]
Grupo Investigación UPM: LPF-TAGRALIA
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The main objective of this research was to develop an automatic procedure able to classify Rich Lady commercial peaches according to their ripeness stage through multispectral imaging techniques. A classification procedure was applied to the ratio images calculated as red (R, 680 nm) divided by infrared (IR, 800 nm), that is, R/IR images. Four image-based ripeness reference classes (A: unripe to D: overripe) were generated from 380 fruit images (season 1: 2006) by a nonsupervised classification method and evaluated according to reference measurements of the ripeness of the same samples: Magness-Taylor penetrometry firmness, low-mass impact firmness, reflectance at 680 nm (R680, and soluble solids content. The assignment of unknown sample images from those season 1 images (internal validation, n = 380) and of 240 images from the 2nd season (season 2: 2007) to the ripeness reference classes (external validation) was carried out by computing the minimum Euclidean distance (classification distance, Cd) between each unknown image histogram and the average histogram of each ripeness reference class. For both validation phases, firmness values decreased and R680 increased for increasing alphabetical order of image-based class letter, reflecting the ripening process. Moreover, 70% (season 1) and 80% (season 2) of the samples below bruise susceptibility firmness were classified into class D.

Más información

ID de Registro: 6424
Identificador DC: http://oa.upm.es/6424/
Identificador OAI: oai:oa.upm.es:6424
Identificador DOI: 10.1111/j.1750-3841.2010.02000.x
URL Oficial: http://onlinelibrary.wiley.com/doi/10.1111/j.1750-3841.2010.02000.x/abstract
Depositado por: Memoria Investigacion
Depositado el: 18 Mar 2011 11:43
Ultima Modificación: 20 Abr 2016 15:43
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM