High-order methods for the numerical solution of the BiGlobal linear stability eigenvalue problem in complex geometries.

González Gutierrez, Leo Miguel; Theofilis, Vassilios y Sherwin, Spencer (2010). High-order methods for the numerical solution of the BiGlobal linear stability eigenvalue problem in complex geometries.. "International Journal for Numerical Methods in Fluids", v. 65 (n. 8); pp. 923-952. ISSN 0271-2091. https://doi.org/10.1002/fld.2220.

Descripción

Título: High-order methods for the numerical solution of the BiGlobal linear stability eigenvalue problem in complex geometries.
Autor/es:
  • González Gutierrez, Leo Miguel
  • Theofilis, Vassilios
  • Sherwin, Spencer
Tipo de Documento: Artículo
Título de Revista/Publicación: International Journal for Numerical Methods in Fluids
Fecha: Enero 2010
Volumen: 65
Materias:
Palabras Clave Informales: BiGlobal;stability;spectral elements;finite elements;complex geometries;eigenvalues
Escuela: E.T.S.I. Navales (UPM)
Departamento: Enseñanzas Básicas de la Ingeniería Naval [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

A high-order computational tool based on spectral and spectral/hp elements (J. Fluid. Mech. 2009; to appear) discretizations is employed for the analysis of BiGlobal fluid instability problems. Unlike other implementations of this type, which use a time-stepping-based formulation (J. Comput. Phys. 1994; 110(1):82–102; J. Fluid Mech. 1996; 322:215–241), a formulation is considered here in which the discretized matrix is constructed and stored prior to applying an iterative shift-and-invert Arnoldi algorithm for the solution of the generalized eigenvalue problem. In contrast to the time-stepping-based formulations, the matrix-based approach permits searching anywhere in the eigenspace using shifting. Hybrid and fully unstructured meshes are used in conjunction with the spatial discretization. This permits analysis of flow instability on arbitrarily complex 2-D geometries, homogeneous in the third spatial direction and allows both mesh (h)-refinement as well as polynomial (p)-refinement. A series of validation cases has been defined, using well-known stability results in confined geometries. In addition new results are presented for ducts of curvilinear cross-sections with rounded corners.

Más información

ID de Registro: 6740
Identificador DC: http://oa.upm.es/6740/
Identificador OAI: oai:oa.upm.es:6740
Identificador DOI: 10.1002/fld.2220
URL Oficial: http://onlinelibrary.wiley.com/doi/10.1002/fld.2220/abstract
Depositado por: Memoria Investigacion
Depositado el: 27 Abr 2011 13:44
Ultima Modificación: 20 Abr 2016 15:55
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM