Asymptotic values of entire meromorphic functions

Alicia Cantón, David Drasin, Ana Granados

Universidad Politécnica de Madrid

Conference on Complex Analysis
May 21-23, 2010
Definitions

Let $f : \mathbb{C} \rightarrow \mathbb{C} \cup \{\infty\}$ meromorphic, a is an asymptotic value for f if there exists a continuous curve γ such that

$$\lim_{z \to \infty, \ z \in \gamma} f(z) = a \in \mathbb{C} \cup \{\infty\}$$

γ is an asymptotic path for a.
Definitions

Let $f : \mathbb{C} \rightarrow \mathbb{C} \cup \{\infty\}$ meromorphic, a is an asymptotic value for f if there exists a continuous curve γ such that

$$\lim_{z \to \infty} f(z) = a \in \mathbb{C} \cup \{\infty\}$$

γ is an asymptotic path for a. $\text{As}(f)$ denotes the set of asymptotic values of f. \hfill \square
Overview and known results

Theorem (Mazurkiewicz)

\[f : \mathbb{C} \to \mathbb{C} \cup \{\infty\} \text{ meromorphic then the set of asymptotic values of } f \text{ is a (Suslin) analytic set of } \mathbb{C} \cup \{\infty\}. \]
Overview and known results

Theorem (Mazurkiewicz)

\[f : \mathbb{C} \rightarrow \mathbb{C} \cup \{\infty\} \text{ meromorphic then the set of asymptotic values of } f \text{ is a (Suslin) analytic set of } \mathbb{C} \cup \{\infty\}. \]

These sets were introduced when Suslin observed that a continuous image of a Borel set need not be Borel.
Overview and known results

Theorem (Mazurkiewicz)

$f : \mathbb{C} \to \mathbb{C} \cup \{\infty\}$ meromorphic then the set of asymptotic values of f is a (Suslin) analytic set of $\mathbb{C} \cup \{\infty\}$.

These sets were introduced when Suslin observed that a continuous image of a Borel set need not be Borel.

The continuous image of an analytic set is also analytic.
Analytic sets

Analytic sets are a generalization of Borel sets. Every Borel set is analytic. Moreover, Borel sets are characterized to be the only analytic sets whose complement is also analytic.
Analytic sets

- Analytic sets are a generalization of Borel sets. Every Borel set is analytic. Moreover, Borel sets are characterized to be the only analytic sets whose complement is also analytic.

In a complete separable metric space an analytic set can be defined as

- a continuous image of $\mathbb{N}^\mathbb{N}$ (or equivalently, a continuous image of the irrational numbers in the unit interval).
Analytic sets

- Analytic sets are a generalization of Borel sets. Every Borel set is analytic. Moreover, Borel sets are characterized to be the only analytic sets whose complement is also analytic.

In a complete separable metric space an analytic set can be defined as

- a continuous image of $\mathbb{N}^\mathbb{N}$ (or equivalently, a continuous image of the irrational numbers in the unit interval).
- the kernel of the A-operation, i.e. A analytic iff

$$A = \bigcup_{N^\mathbb{N}} \bigcap_{n_k} S_{n_1 \ldots n_k}$$

with $\{S_{n_1 \ldots n_k}\}$ a family of sets indexed with all finite sequences of natural numbers. It is called the “defining system” of A.
Order of growth

Let $f : \mathbb{C} \to \mathbb{C} \cup \{\infty\}$

- If f is holomorphic, its order of growth can be defined as,

$$\rho = \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}$$

where $M(r, f) = \max_{|z|=r} |f(z)|$.
Order of growth

Let $f : \mathbb{C} \to \mathbb{C} \cup \{\infty\}$

- If f is holomorphic, its order of growth can be defined as,

$$
\rho = \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}
$$

where $M(r, f) = \max_{|z| = r} |f(z)|$.

- If f is meromorphic,

$$
\rho = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}
$$

where $T(r, f) = \int_0^r \frac{n(t)}{t} \, dt + \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta$ and $n(t)$ is the number of poles of f in the disk $D(0, t)$.

Order of growth

Let $f : \mathbb{C} \rightarrow \mathbb{C} \cup \{\infty\}$

- If f is holomorphic, its order of growth can be defined as,

$$
\rho = \limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r}
$$

where $M(r, f) = \max_{|z|=r} |f(z)|$.

- If f is meromorphic,

$$
\rho = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r}
$$

where $T(r, f) = \int_0^r \frac{n(t)}{t} dt + \int_0^{2\pi} \log^+ |f(re^{i\theta})| \, d\theta$ and $n(t)$ is the number of poles of f in the disk $D(0, t)$.

Polynomials and rational functions have $\rho = 0$ (and $\#\text{As}(f) = 1$). The exponential function has $\rho = 1$ (and $\#\text{As}(f) = 2$).
Holomorphic case

The bigger the order of growth, the richer the behavior of f near infinity?

Theorem (Ahlfors)

If f is entire of order ρ then,

$$\#\text{As}(f) \leq 2\rho + 1.$$

Notice that ∞ is always an asymptotic value for an entire f.
Holomorphic case

The bigger the order of growth, the richer the behavior of f near infinity?

Theorem (Ahlfors)

If f *is entire of order* ρ *then,*

$$\#\text{As}(f) \leq 2\rho + 1.$$

Notice that ∞ is always an asymptotic value for an entire f.

Theorem (Heins)

Given an analytic set A *such that* $\infty \in A$ *there exists an entire function so that*

$$A = \text{As}(f).$$
Holomorphic case

The bigger the order of growth, the richer the behavior of f near infinity?

Theorem (Ahlfors)

If f is entire of order ρ then,

$$\#\text{As}(f) \leq 2\rho + 1.$$

Notice that ∞ is always an asymptotic value for an entire f.

Theorem (Heins)

Given an analytic set A such that $\infty \in A$ there exists an entire function so that

$$A = \text{As}(f).$$

If A is not finite, the order of growth of f is infinite.
Meromorphic case

Theorem (Valiron)

- There exists a meromorphic function in \mathbb{C} of finite order such that $\text{As}(f)$ is an infinite set (with the cardinality of the continuum).
Meromorphic case

Theorem (Valiron)

- There exists a meromorphic function in \(\mathbb{C} \) of finite order such that \(\text{As}(f) \) is an infinite set (with the cardinality of the continuum).

- Let \(f \) be a meromorphic function in \(\mathbb{C} \). If \(T(r, f) = O(\log^2 r) \) then \(f \) has at most one asymptotic value.
Meromorphic case

Theorem (Valiron)
- There exists a meromorphic function in \mathbb{C} of finite order such that $\text{As}(f)$ is an infinite set (with the cardinality of the continuum).
- Let f be a meromorphic function in \mathbb{C}. If $T(r, f) = O(\log^2 r)$ then f has at most one asymptotic value.

Theorem (Eremenko)
For any $0 \leq \rho \leq \infty$ there exists a meromorphic function f in \mathbb{C} of order ρ such that

$$\text{As}(f) = \mathbb{C} \cup \{\infty\}.$$
Meromorphic case

Theorem (Valiron)
- There exists a meromorphic function in \mathbb{C} of finite order such that $\text{As}(f)$ is an infinite set (with the cardinality of the continuum).
- Let f be a meromorphic function in \mathbb{C}. If $T(r, f) = O(\log^2 r)$ then f has at most one asymptotic value.

Theorem (Eremenko)
For any $0 < \rho \leq \infty$ there exists a meromorphic function f in \mathbb{C} of order ρ such that

$$\text{As}(f) = \mathbb{C} \cup \{\infty\}.$$

Moreover, for any increasing function $\psi(r) \nearrow \infty$ ($r \to \infty$) there exists f meromorphic in \mathbb{C} such that

$$T(r, f) = O(\psi(r) \log^2 r) \quad \text{and} \quad \text{As}(f) = \mathbb{C} \cup \{\infty\}.$$
Meromorphic case. The remaining case

Theorem (C., Drasin, Granados)

Given an analytic set \(\mathcal{A} \in \mathbb{C} \) and given \(0 \leq \rho \leq \infty \) there exists a meromorphic function, \(f \), defined in \(\mathbb{C} \) of order \(\rho \) such that

\[
\text{As}(f) = \mathcal{A}.
\]

Moreover, for any increasing function \(\psi(r) \uparrow \infty \ (r \to \infty) \) there exists \(f \) meromorphic in \(\mathbb{C} \) such that

\[
T(r, f) = O(\psi(r) \log^2 r) \quad \text{and} \quad \text{As}(f) = \mathcal{A}.
\]
Outline of the proof

WLOG A contains 0 and ∞.
Assume $A := A \setminus \{\infty\} \subset D(0, 1)$ and ψ are given (case $\rho = 0$).
Outline of the proof

WLOG \(\mathcal{A} \) contains 0 and \(\infty \).
Assume \(A := \mathcal{A} \setminus \{\infty\} \subset D(0, 1) \) and \(\psi \) are given (case \(\rho = 0 \)).

1. Construct a suitable \(\delta \)-subharmonic function \(U \), with \(T(r, U) \) controlled in terms of \(\psi \) and with asymptotic values \(\{-\infty, \infty\} \).
Outline of the proof

WLOG \mathcal{A} contains 0 and ∞.
Assume $\mathcal{A} := \mathcal{A} \setminus \{\infty\} \subset D(0, 1)$ and ψ are given (case $\rho = 0$).

1. Construct a suitable δ-subharmonic function U, with $T(r, U)$ controlled in terms of ψ and with asymptotic values $\{-\infty, \infty\}$.

2. Approximate the Riesz charge of U by point masses, that will conform the Riesz mass of $\log |g|$, for g meromorphic in \mathbb{C}.
Outline of the proof

WLOG \mathcal{A} contains 0 and ∞.
Assume $A := \mathcal{A} \setminus \{\infty\} \subset D(0, 1)$ and ψ are given (case $\rho = 0$).

1. Construct a suitable δ-subharmonic function U, with $T(r, U)$ controlled in terms of ψ and with asymptotic values $\{-\infty, \infty\}$.

2. Approximate the Riesz charge of U by point masses, that will conform the Riesz mass of $\log |g|$, for g meromorphic in \mathbb{C}.

3. The approximation is “good” outside a (small) set E, and in $E \log |g|$ is small (large) whenever U is small (large) so $\log |g|$ will “mimic” the behavior of U.
Outline of the proof

4. $T(r, g)$ is controlled in terms of ψ and the set of asymptotic values of g is $\{0, \infty\}$.
4. $T(r, g)$ is controlled in terms of ψ and the set of asymptotic values of g is $\{0, \infty\}$.

5. Modify g by a quasiconformal map Φ, so asymptotic paths that approach 0 will approach $a \in A$. Now $F = \Phi \circ g$ is quasiregular of dilatation σ_F.
Outline of the proof

4. $T(r, g)$ is controlled in terms of ψ and the set of asymptotic values of g is $\{0, \infty\}$.

5. Modify g by a quasiconformal map Φ, so asymptotic paths that approach 0 will approach $a \in A$. Now $F = \Phi \circ g$ is quasiregular of dilatation σ_F.

6. Solve the Beltrami equation $\overline{\overline{\partial}} \phi = \sigma_F \partial \phi$ to find another quasiconformal map so that $f = F \circ \phi$ is meromorphic, $T(r, f) = O(\psi(r) \log^2 r)$ and $\text{As}(f) = A$.
Sketch of the proof. Construction of U

$U(re^{i\theta})$ is a piecewise linear function on θ (for fixed r) so that is symmetric: $U(z) = -U(-z)$ and $U(r) = U(-r) = 0$, therefore we will only show U in the upper-half plane.

Graph of $U(re^{i\theta})$ for fixed r.
Sketch of the proof. Graphs of $U(re^{i\theta})$

- the slope of the linear pieces of $U(re^{i\theta})$ is $L(r)$ for some increasing function $L(r) \nearrow \infty$ as $(r \to \infty)$. The function L depends on ψ,
Sketch of the proof. Graphs of $U(re^{i\theta})$

- the slope of the linear pieces of $U(re^{i\theta})$ is $L(r)$ for some increasing function $L(r) \uparrow \infty$ as $(r \to \infty)$. The function L depends on ψ,
- the number of the linear components of U increase with r, by splitting local minima into two local minima.
Sketch of the proof. Graphs of $U(re^{i\theta})$

- the slope of the linear pieces of $U(re^{i\theta})$ is $L(r)$ for some increasing function $L(r) \nearrow \infty$ as $(r \to \infty)$. The function L depends on ψ,

- the number of the linear components of U increase with r, by splitting local minima into two local minima.
Sketch of the proof. Paths of local minima and maxima

In the upper-half plane

- As the local minima split their paths follow the structure of a dyadic tree.
Sketch of the proof. Paths of local minima and maxima

In the upper-half plane

- As the local minima split their paths follow the structure of a dyadic tree.

Paths of local minima, \(\gamma \).
Sketch of the proof. Paths of local minima and maxima

In the upper-half plane

- As the local minima split their paths follow the structure of a dyadic tree.
- The paths of the local maxima separate the branches of the tree and remain undivided.

Paths of local minima, γ. Paths of local minima and maxima.
Sketch of the proof. Riesz mass of U

The Riesz (signed) mass of U is

$$\Delta U = \mu + \mu_e$$

where

- μ is supported on the paths of local maxima and minima, Γ.
- μ_e is supported in $\mathbb{C} \setminus \Gamma$.
Sketch of the proof. Riesz mass of U

The Riesz (signed) mass of U is

$$\Delta U = \mu + \mu_e$$

where

- μ is supported on the paths of local maxima and minima, Γ.
- μ_e is supported in $\mathbb{C} \setminus \Gamma$.

The measure μ_e is “small” and only μ will be approximated by point masses located on the branches of Γ following standard approximation techniques (Yulmukhametov, Liubarskii-Malinnikova...).
Sketch of the proof. The role of the analytic set A

The function U is constructed in such a way that

- $U \to +\infty$ on paths of local maxima,
- $U \to -\infty$ on paths of local minima,

(so g approaches ∞ on paths of local maxima and 0 on paths of local minima).
Sketch of the proof. The role of the analytic set A

The function U is constructed in such a way that

- $U \to +\infty$ on paths of local maxima,
- $U \to -\infty$ on paths of local minima,

(so g approaches ∞ on paths of local maxima and 0 on paths of local minima).

The rate at which U approaches $\pm \infty$ depends on the analytic set A by associating to each point of A a branch of Γ.
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

Let A be a Cantor set given by $A = \bigcap_{j=1}^{\infty} E_j$ with $E_j = \bigcup_n Q^n_j$ where,

- Q^n_j are closed cubes in \mathbb{C}.
- For every $Q^n_j \subset E_j$ there exists a $Q^{j-1}_m \subset E_{j-1}$ such that $Q^n_j \subset Q^{j-1}_m$.
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

Let A be a Cantor set given by $A = \bigcap_{j=1}^{\infty} E_j$ with $E_j = \bigcup_n Q_n^j$ where,

- Q_n^j are closed cubes in \mathbb{C}.
- For every $Q_n^j \subset E_j$ there exists a $Q_{m}^{j-1} \subset E_{j-1}$ such that $Q_n^j \subset Q_{m}^{j-1}$.

Assume further that
- $\text{diam}(Q_n^j) = \delta_j$ for some given sequence $\delta_j \searrow 0$.
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

Let A be a Cantor set given by $A = \bigcap_{j=1}^{\infty} E_j$ with $E_j = \bigcup_n Q^j_n$ where,

- Q^j_n are closed cubes in \mathbb{C}.
- For every $Q^j_n \subset E_j$ there exists a $Q^{j-1}_m \subset E_{j-1}$ such that $Q^j_n \subset Q^{j-1}_m$.

Assume further that

- $\text{diam}(Q^j_n) = \delta_j$ for some given sequence $\delta_j \downarrow 0$.

Pick a fixed $a^j_n \in Q^j_n$ for all n and j. Each $a \in A$ is given by $a = \bigcap_j Q^j_n$ so there is a sequence $a^j_n \rightarrow a$ ($j \rightarrow \infty$) in such a way that $|a^j_n - a| \leq \delta_j$.
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

The association of points in A and branches of γ is done in the obvious way (recall $0 \in A$).
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

The association of points in A and branches of γ is done in the obvious way (recall $0 \in A$).

Associate 0 to the first branches, until in generation k,
\[\# \{ Q_n^1 \} \leq 2^k \text{ for some } k = k(1). \]
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

The association of points in A and branches of γ is done in the obvious way (recall $0 \in A$).

Associate 0 to the first branches, until in generation k,

$\#\{Q_{n}^{1}\} \leq 2^{k}$ for some $k = k(1)$.

[Diagram of the Cantor set with branches labeled $a_{1}^{1}, a_{2}^{1}, a_{N-1}^{1}, a_{N}^{1}$]
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

The association of points in A and branches of γ is done in the obvious way (recall $0 \in A$).

Notice $|a_n^1| \leq \text{diam}(A) \leq 2$
Sketch of the proof. The role of the analytic set \(A \)

Example with \(A \) a Cantor set

The association of points in \(A \) and branches of \(\gamma \) is done in the obvious way (recall \(0 \in A \)).

Assume \(a^n_i \) is associated to a branch.
Sketch of the proof. The role of the analytic set A

Example with A a Cantor set

The association of points in A and branches of γ is done in the obvious way (recall $0 \in A$).

Assume a^j_n is associated to a branch.

Wait until $\#\{Q^j_n\} \leq 2^k$ (for all n) for some $k = k(j)$.

Associate to those branches, $a^j_{m+1} \in Q^j_{m+1} \subset Q^j_n$.

\[a^j_n \]

\[a^j_{m+1} \]

\[a^j_{m+1} \]

\[a^j_{m} \]
Sketch of the proof. The role of the analytic set A.

Example with A a Cantor set.

The association of points in A and branches of γ is done in the obvious way (recall $0 \in A$).

Notice

$$|a^j_n - a^{j+1}_m| \leq \text{diam}(Q^j_n) = \delta_j$$
Sketch of the proof

Example with A a Cantor set

U is constructed so that $|g|$ is small on the branches of γ.
Sketch of the proof

Example with \(A \) a Cantor set

\(U \) is constructed so that \(|g|\) is small on the branches of \(\Upsilon \). Concretely, given a sequence \(\delta_j \searrow 0 \),

- In the ‘first’ generation of branches of \(\Upsilon \),
 \(\delta_1 < |g| < 2 \) (area in blue),
- in the ‘second’ generation
 \(\delta_2 < |g| < \delta_1 \) (area in yellow),
- and so on...

The set of asymptotic values is \(\text{As}(g) = \{0, \infty\} \).
Sketch of the proof

Example with A a Cantor set
\mathcal{U} is constructed so that $|g|$ is small on the branches of \mathcal{U}. Concretely, given a sequence $\delta_j \to 0$,

- In the ‘first’ generation of branches of \mathcal{U},
 $$\delta_1 < |g| < 2 \text{ (area in blue)},$$
- in the ‘second’ generation
 $$\delta_2 < |g| < \delta_1 \text{ (area in yellow)},$$
- and so on...

The set of asymptotic values is $\text{As}(g) = \{0, \infty\}$. That is easily proved since $|g| \to 0$ uniformly on branches of \mathcal{U}, and $|g| \to \infty$ on the other paths of Γ in the upper half-plane.
Sketch of the proof

Example with A a Cantor set

U is constructed so that $|g|$ is small on the branches of γ. Concretely, given a sequence $\delta_j \searrow 0$,

- In the ‘first’ generation of branches of γ,
 $\delta_1 < |g| < 2$ (area in blue),

- in the ‘second’ generation
 $\delta_2 < |g| < \delta_1$ (area in yellow),

- and so on...

The set of asymptotic values is $\text{As}(g) = \{0, \infty\}$. That is easily proved since $|g| \to 0$ uniformly on branches of γ, and $|g| \to \infty$ on the other paths of Γ in the upper half-plane. By symmetry the same happens in the lower
Sketch of the proof. Quasiconformal translations

To “map” the set \(\{0, \infty\} \) into \(A \cup \{\infty\} = \mathcal{A} \) we compose recursively with quasiconformal translations
Sketch of the proof. Quasiconformal translations

To “map” the set \(\{0, \infty\} \) into \(A \cup \{\infty\} = A \) we compose recursively with quasiconformal translations:

Lemma

Given \(K > 1 \) and \(R > 0 \) there exists \(0 < \delta < R \) so that if \(|a| < \delta \), then there is a \(K \)-quasiconformal map \(\varphi \) so that

\[
\varphi(z) = \begin{cases}
z, & |z| > R,
z + a, & |z| \leq \delta. \end{cases}
\]
Sketch of the proof. Quasiconformal translations

To “map” the set \(\{0, \infty\} \) into \(A \cup \{\infty\} = A \) we compose recursively with quasiconformal translations:

Lemma

Given \(K > 1 \) and \(R > 0 \) there exists \(0 < \delta < R \) so that if \(|a| < \delta \), then there is a \(K \)-quasiconformal map \(\varphi \) so that

\[
\varphi(z) = \begin{cases}
 z, & |z| > R, \\
 z + a, & |z| \leq \delta.
\end{cases}
\]

Given a sequence \(\{K_j\} \) such that \(\prod_j K_j = K < \infty \) use lemma (starting with \(R = 2 \)) to find a sequence \(\{\delta_j\} \).
Sketch of the proof. Quasiconformal translations

To “map” the set \(\{0, \infty\} \) into \(A \cup \{\infty\} = A \) we compose recursively with quasiconformal translations:

Lemma

Given \(K > 1 \) and \(R > 0 \) there exists \(0 < \delta < R \) so that if \(|a| < \delta \), then there is a \(K \)-quasiconformal map \(\varphi \) so that

\[
\varphi(z) = \begin{cases}
 z, & |z| > R, \\
 z + a, & |z| \leq \delta.
\end{cases}
\]

Given a sequence \(\{K_j\} \) such that \(\prod_j K_j = K < \infty \) use lemma (starting with \(R = 2 \)) to find a sequence \(\{\delta_j\} \). This will be our “given” sequence \(\{\delta_j\} \).
Sketch of the proof. Composition with qc transformations

Example with A a Cantor set

Given $a \in A$, consider $a^j \to a$ and the associated branch.
Sketch of the proof. Composition with qc transformations

Example with A a Cantor set

Given $a \in A$, consider $a^j \rightarrow a$ and the associated branch. Compose g (on the branch) with a qc map, φ_1 such that $\varphi_1(z) = z + a^1$ if $|z| < \delta_1$.

\[\delta_1 < |g| < \delta_2 \]

\[\delta_2 < |g| < \delta_1 \]

\[\delta_3 < |g| < \delta_2 \]

\[\delta_1 < |g| < 2 \]
Sketch of the proof. Composition with qc transformations

Example with A a Cantor set

Given $a \in A$, consider $a^j \rightarrow a$ and the associated branch. Compose g (on the branch) with a qc map, φ_1 such that $\varphi_1(z) = z + a^1$ if $|z| < \delta_1$.

\[
g(z) \xrightarrow{\varphi_1} g(z) + a^1
\]
Sketch of the proof. Composition with qc transformations

Example with A a Cantor set

Given $a \in A$, consider $a^j \to a$ and the associated branch. Compose g (on the branch) with a qc map, φ_1 such that $\varphi_1(z) = z + a^1$ if $|z| < \delta_1$.

Compose $\varphi_1 \circ g$ with φ_2 such that $\varphi_2(z) = z + a^2 - a^1$ if $|z - a^1| < \delta_2$.

$$g(z) \xrightarrow{\varphi_1} g(z) + a^1$$
Sketch of the proof. Composition with qc transformations

Example with A a Cantor set

Given $a \in A$, consider $a^j \to a$ and the associated branch. Compose g (on the branch) with a qc map, φ_1 such that $\varphi_1(z) = z + a^1$ if $|z| < \delta_1$. Compose $\varphi_1 \circ g$ with φ_2 such that $\varphi_2(z) = z + a^2 - a^1$ if $|z - a^1| < \delta_2$.

$$g(z) \xrightarrow{\varphi_2 \varphi_1} g(z) + a^2$$

$$g(z) \xrightarrow{\varphi_2 \varphi_1} g(z) + a^1$$

$$g(z) \xrightarrow{\varphi_2 \varphi_1} g(z)$$
Sketch of the proof. Composition with qc transformations

Example with A a Cantor set

Given $a \in A$, consider $a^j \to a$ and the associated branch. Compose g (on the branch) with a qc map, φ_1 such that $\varphi_1(z) = z + a^1$ if $|z| < \delta_1$.

Compose $\varphi_1 \circ g$ with φ_2 such that $\varphi_2(z) = z + a^2 - a^1$ if $|z - a^1| < \delta_2$.

Along this branch, after composing with qc transformations $F = \Phi \circ g$
Sketch of the proof. Final tuning

In this way,

- $F = \Phi \circ g$ a quasiregular map whose set of asymptotic values is $A \cup \{\infty\} = \mathcal{A}$.
Sketch of the proof. Final tuning

In this way,

- $F = \Phi \circ g$ a quasiregular map whose set of asymptotic values is $A \cup \{\infty\} = \mathcal{A}$.
- The qc distortion is killed by precomposing F with a qc map with the same dilatation to get a meromorphic function f with $\text{As}(f) = \mathcal{A}$.
Sketch of the proof. Final tuning

In this way,

- $F = \Phi \circ g$ a quasiregular map whose set of asymptotic values is $A \cup \{\infty\} = \mathcal{A}$.
- The qc distortion is killed by precomposing F with a qc map with the same dilatation to get a meromorphic function f with $\text{As}(f) = \mathcal{A}$.
- $T(r, g) = T(r, F)$ since Φ is the identity for large $|z|$.
Sketch of the proof. Final tuning

In this way,

- $F = \Phi \circ g$ a quasiregular map whose set of asymptotic values is $A \cup \{\infty\} = \mathcal{A}$.
- The qc distortion is killed by precomposing F with a qc map with the same dilatation to get a meromorphic function f with $\text{As}(f) = \mathcal{A}$.
- $T(r, g) = T(r, F)$ since Φ is the identity for large $|z|$.
- $T(r, f)$ is controlled by $T(r, F)$ and K, so by choosing an adequate $L(r)$ we get the desired growth: $T(r, f) = O(\psi(r) \log^2 r)$.
Sketch of the proof. Final tuning

In this way,

- $F = \Phi \circ g$ a quasiregular map whose set of asymptotic values is $A \cup \{\infty\} = \mathcal{A}$.
- The qc distortion is killed by precomposing F with a qc map with the same dilatation to get a meromorphic function f with $\text{As}(f) = \mathcal{A}$.
- $T(r, g) = T(r, F)$ since Φ is the identity for large $|z|$.
- $T(r, f)$ is controlled by $T(r, F)$ and K, so by choosing an adequate $L(r)$ we get the desired growth: $T(r, f) = O(\psi(r) \log^2 r)$.
- If $A = \mathcal{A} \setminus \{\infty\}$ is unbounded, then decompose A in a countable number of bounded sets of diameter at most 2, and construct countable many dyadic trees in a similar way.
Sketch of the proof. Analytic sets

When A is not a Cantor set, but a general analytic set,
Sketch of the proof. Analytic sets

When A is not a Cantor set, but a general analytic set, $A = \bigcup_{n\in\mathbb{N}} \bigcap_k S_{n_1...n_k}$ where,

- $S_{n_1...n_k}$ are (nonempty) closed sets in \mathbb{C},
- $S_{n_1...n_{k+1}} \subset S_{n_1...n_k}$,
Sketch of the proof. Analytic sets

When A is not a Cantor set, but a general analytic set, $A = \bigcup_{\mathbb{N} \times \mathbb{N}} \cap_k S_{n_1 \ldots n_k}$ where,

- $S_{n_1 \ldots n_k}$ are (nonempty) closed sets in \mathbb{C},
- $S_{n_1 \ldots n_{k+1}} \subset S_{n_1 \ldots n_k}$,

and further

- $\text{diam}(S_{n_1 \ldots n_k}) \leq \delta_k$ for some given sequence $\delta_k \searrow 0$.
Sketch of the proof. Analytic sets

When A is not a Cantor set, but a general analytic set, $A = \bigcup_{n \in \mathbb{N}} \bigcap_{k} S_{n_1 \ldots n_k}$ where,

- $S_{n_1 \ldots n_k}$ are (nonempty) closed sets in \mathbb{C},
- $S_{n_1 \ldots n_{k+1}} \subset S_{n_1 \ldots n_k}$,

and further

- $\text{diam}(S_{n_1 \ldots n_k}) \leq \delta_k$ for some given sequence $\delta_k \downarrow 0$.

This is called "regular defining system".
Sketch of the proof. Analytic sets

When A is not a Cantor set, but a general analytic set, $A = \bigcup \bigcap_{A_k} S_{n_1\ldots n_k}$ where,

- $S_{n_1\ldots n_k}$ are (nonempty) closed sets in \mathbb{C},
- $S_{n_1\ldots n_k+1} \subset S_{n_1\ldots n_k}$,

and further

- $\text{diam}(S_{n_1\ldots n_k}) \leq \delta_k$ for some given sequence $\delta_k \searrow 0$.

This is called “regular defining system”.

For each $n_1 \ldots n_k$ pick $a_{n_1\ldots n_k} \in S_{n_1\ldots n_k}$.

Each $a \in A$ is given by $a = \bigcap S_{n_1\ldots n_k}$ so there is a sequence $\{a_{n_1\ldots n_k}\}$ so that

$$a_{n_1\ldots n_k} \to a \ (k \to \infty) \text{ and } |a_{n_1\ldots n_k} - a| \leq \delta_k.$$
Sketch of the proof. Analytic sets and binary expansions

The association of points in A and branches of Γ is done in a similar way.
Sketch of the proof. Analytic sets and binary expansions

The association of points in A and branches of T is done in a similar way. To a finite sequence n_1, \ldots, n_k associate a finite sequence ξ_1, \ldots, ξ_N of 0's and 1's (and this latter one, with a (finite) branch of a dyadic tree) in the following way:

$$\sum_{j=1}^{N} \frac{\xi_j}{2^j} = \sum_{j=1}^{k} \frac{1}{2^{m_1+\cdots+m_j}}$$

Notice that $N = n_1 + \cdots + n_k$.
Sketch of the proof. Analytic sets and binary expansions

The association of points in \(A \) and branches of \(\mathcal{T} \) is done in a similar way. To a finite sequence \(n_1, \ldots, n_k \) associate a finite sequence \(\xi_1, \ldots, \xi_N \) of 0's and 1's (and this latter one, with a (finite) branch of a dyadic tree) in the following way:

\[
\sum_{j=1}^{N} \frac{\xi_j}{2^j} = \sum_{j=1}^{k} \frac{1}{2^{n_1 + \cdots + n_j}}
\]

Notice that \(N = n_1 + \cdots + n_k \).

Example

\[1, 3, 1 \leftrightarrow \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^5} \leftrightarrow 1, 0, 0, 1, 1\]
Sketch of the proof. Analytic sets and binary expansions

The association of points in A and branches of \mathcal{T} is done in a similar way. To a finite sequence n_1, \ldots, n_k associate a finite sequence ξ_1, \ldots, ξ_N of 0's and 1's (and this latter one, with a (finite) branch of a dyadic tree) in the following way:

$$\sum_{j=1}^{N} \frac{\xi_j}{2^j} = \sum_{j=1}^{k} \frac{1}{2^{n_1+\cdots+n_j}}$$

Notice that $N = n_1 + \cdots + n_k$.

Example

$$1, 3, 1 \iff \frac{1}{2} + \frac{1}{2^4} + \frac{1}{2^5} \iff 1, 0, 0, 1, 1, 0$$
Sketch of the proof. Analytic sets and trees

To $0 \in A$ associate any finite sequence of 0’s.
Sketch of the proof. Analytic sets and trees

To $0 \in A$ associate any finite sequence of 0’s.
Sketch of the proof. Analytic sets and trees

To $0 \in A$ associate any finite sequence of 0’s.
Sketch of the proof. Analytic sets and trees

To $0 \in A$ associate any finite sequence of 0’s.
With this association the distance between two adjacent points of consecutive generations does not decrease with the generation!

In the second generation:

- $|a_1 - a_{1,1}| \leq \delta_1$ since $a_1, a_{1,1} \in S_1$
- $|a_2| \leq 2$ since $0, a_1 \in A$
Sketch of the proof. Analytic sets and trees

With this association the distance between two adjacent points of consecutive generations does not decrease with the generation!

In the second generation:
- $|a_1 - a_{1,1}| \leq \delta_1$ since $a_1, a_{1,1} \in S_1$
- $|a_2| \leq 2$ since $0, a_1 \in A$

In the third generation:
- $|a_{1,1} - a_{1,1,1}| \leq \delta_2$ since $a_{1,1}, a_{1,1,1} \in S_{1,1}$
- $|a_2 - a_{2,1}| \leq \delta_1$ since $a_2, a_{2,1} \in S_2$ and $|a_1 - a_{1,2}| \leq \delta_1$ since $a_1, a_{1,2} \in S_1$
- $|a_3| \leq 2$ since $0, a_3 \in A$
Sketch of the proof. Analytic sets and trees

Again, U is constructed so that $|g|$ is small on the branches of Υ depending on the distances $\{\delta_k\}$ of two adjacent points of different generations.
Sketch of the proof. Analytic sets and trees

Again, U is constructed so that $|g|$ is small on the branches of T depending on the distances $\{\delta_k\}$ of two adjacent points of different generations. Graphically:

$\delta_1 < |g| < 2$

$\delta_2 < |g| < \delta_1$

$\delta_3 < |g| < \delta_2$
Sketch of the proof. Analytic sets and trees

Again, U is constructed so that $|g|$ is small on the branches of Γ depending on the distances $\{\delta_k\}$ of two adjacent points of different generations. Graphically:

Now there are branches of the tree where $|g|$ is bounded and some work has to be done to show that g does not take any asymptotic value on those branches to get $\text{As}(g) = \{0, \infty\}$.
Sketch of the proof. Analytic sets and trees

Again, U is constructed so that $|g|$ is small on the branches of Γ depending on the distances $\{\delta_k\}$ of two adjacent points of different generations. Graphically:

Now there are branches of the tree where $|g|$ is bounded and some work has to be done to show that g does not take any asymptotic value on those branches to get $\text{As}(g) = \{0, \infty\}$. The rest follows as explained before.
The end

Thank you!