WSPH and ISPH Calculations of a Counter-Rotating Vortex Dipole

González Gutierrez, Leo Miguel; Sánchez, J.M.; Macia Lang, Fabricio; Duque Campayo, Daniel; Gómez Goñi, Jesús María y Rodríguez Pérez, Miguel Ángel (2010). WSPH and ISPH Calculations of a Counter-Rotating Vortex Dipole. En: "5th International SPHERIC SPH Workshop, 2010", 23/06/2010 - 25/06/2010, Manchester, UK. pp. 1-8.


Título: WSPH and ISPH Calculations of a Counter-Rotating Vortex Dipole
  • González Gutierrez, Leo Miguel
  • Sánchez, J.M.
  • Macia Lang, Fabricio
  • Duque Campayo, Daniel
  • Gómez Goñi, Jesús María
  • Rodríguez Pérez, Miguel Ángel
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: 5th International SPHERIC SPH Workshop, 2010
Fechas del Evento: 23/06/2010 - 25/06/2010
Lugar del Evento: Manchester, UK
Título del Libro: Proceedings of the 5th International SPHERIC SPH Workshop
Fecha: 2010
Escuela: E.T.S.I. Navales (UPM)
Departamento: Enseñanzas Básicas de la Ingeniería Naval [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (667kB) | Vista Previa


Viscosity and vorticity are magnitudes playing an important role in many engineering physical phenomena such as: boundary layer separation, transition flows, shear flows, etc., demonstrating the importance of the vortical viscous flows commonly used among the SPH community. The simulation presented here, describes the physics of a pair of counter-rotating vortices in which the strain field felt by each vortex is due to the other one. Different from the evolution of a single isolated vortex, in this case each vortex is subjected to an external stationary strain field generated by the other, making the streamlines deform elliptically. To avoid the boundary influence, a large computational domain has been used ensuring insignificant effect of the boundary conditions on the solution. The performance of the most commonly used viscous models in simulating laminar flows, Takeda’s (TVT), Morris’ (MVT) and Monaghan-Cleary’s (MCGVT) has been discussed comparing their results. These viscous models have been used under two different compressibility hypotheses. Two cases have been numerically analyzed in this presentation. In the first case, a 2D system of two counter-rotating Lamb O seen vortices is considered. At first, the system goes through a rapid relaxation process in which both vortices equilibrate each other. This quasi-steady state is obtained after the relaxation phase is advected at a constant speed and slowly evolves owing to viscous diffusion. The results of the different Lamb-O seen numerical solutions have been validated with good agreement by comparison with the numerical results of a finite element code (ADFC) solution. A second case, somewhat more complex than the previous one, is a 3D Batchelor vortex dipole obtained by adding an axial flow to the system of the first case. The Batchelor vortex model considered here is a classical option normally used to model the structure of trailing vortices in the far-wake of an aircraft.

Más información

ID de Registro: 6768
Identificador DC:
Identificador OAI:
URL Oficial:
Depositado por: Memoria Investigacion
Depositado el: 29 Abr 2011 11:30
Ultima Modificación: 20 Abr 2016 15:56
  • InvestigaM
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM