High-frequency propagation for the Schrödinger equation on the torus

Macia Lang, Fabricio (2010). High-frequency propagation for the Schrödinger equation on the torus. "Journal of Functional Analysis" (n. 258); pp. 933-955. ISSN 0022-1236. https://doi.org/10.1016/j.jfa.2009.09.020.

Descripción

Título: High-frequency propagation for the Schrödinger equation on the torus
Autor/es:
  • Macia Lang, Fabricio
Tipo de Documento: Artículo
Título de Revista/Publicación: Journal of Functional Analysis
Fecha: Enero 2010
Materias:
Palabras Clave Informales: Semiclassical (Wigner) measures; Schrödinger equation on the torus; Quantum limits; Two-microlocal Wigner measures; Resonances; Strichartz estimates
Escuela: E.T.S.I. Navales (UPM)
Departamento: Enseñanzas Básicas de la Ingeniería Naval [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (540kB) | Vista Previa

Resumen

The main objective of this paper is understanding the propagation laws obeyed by high-frequency limits of Wigner distributions associated to solutions to the Schroedinger equation on the standard d-dimensional torus T^{d}. From the point of view of semiclassical analysis, our setting corresponds to performing the semiclassical limit at times of order 1/h, as the characteristic wave-length h of the initial data tends to zero. It turns out that, in spite that for fixed h every Wigner distribution satisfies a Liouville equation, their limits are no longer uniquely determined by those of the Wigner distributions of the initial data. We characterize them in terms of a new object, the resonant Wigner distribution, which describes high-frequency effects associated to the fraction of the energy of the sequence of initial data that concentrates around the set of resonant frequencies in phase-space T^{*}T^{d}. This construction is related to that of the so-called two-microlocal semiclassical measures. We prove that any limit \mu of the Wigner distributions corresponding to solutions to the Schroedinger equation on the torus is completely determined by the limits of both the Wigner distribution and the resonant Wigner distribution of the initial data; moreover, \mu follows a propagation law described by a family of density-matrix Schroedinger equations on the periodic geodesics of T^{d}. Finally, we present some connections with the study of the dispersive behavior of the Schroedinger flow (in particular, with Strichartz estimates). Among these, we show that the limits of sequences of position densities of solutions to the Schroedinger equation on T^2 are absolutely continuous with respect to the Lebesgue measure.

Más información

ID de Registro: 6842
Identificador DC: http://oa.upm.es/6842/
Identificador OAI: oai:oa.upm.es:6842
Identificador DOI: 10.1016/j.jfa.2009.09.020
URL Oficial: http://www.elsevier.com/locate/jfa
Depositado por: Memoria Investigacion
Depositado el: 06 May 2011 08:40
Ultima Modificación: 20 Abr 2016 15:59
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM