
On the requirements for quality composability
modeling and analysis

Javier F. Briones, Miguel de Miguel, Juan Pedro Silva, Alejandro Alonso
Universidad Politécnica de Madrid

Email: {jfbriones, mmiguel, aalonso, psilva}@dit.upm.es

Abstract—Real-time, embedded and safety-critical systems
have to meet some quality criteria in order to provide certain
reliance on its operation. The quality of a system depends
on the complex composition of the quality of its subsystems.
Quality composability depends on matchmaking the provided and
required quality specifications. To allow for flexibility during the
system design, we study composability as a configuration prob-
lem. We allow options of quality specifications to represent design
choices, deployment choices, operation modes or component
adaptability. This kind of assessments of system architectures
is very important e.g., for COTS development. The contributions
of this paper are: to study the modeling requirements to model
composability analysis, to compare two modeling approaches,
and to show how a model-driven environment can leverage
composability assessments. The two modeling approaches, QoS-
FT + OCL and MARTE + VSL, are used to attach quality
specifications to system models. However, our ultimate goal is
to evaluate these specifications, and we have implemented tool-
support to evaluate composability using constraint satisfaction
techniques.

I. INTRODUCTION

Real-time, embedded and safety-critical systems are often
dependable systems. Dependable systems are those on which
reliance can justifiably be placed on the functionality they
deliver. Reliance covers several aspects such as reliability,
availability, safety and security; all of them can be character-
ized using non-functional properties. Engineering systems to
the highest reasonably practicable standards of dependability
is a great challenge. Failing to do it increases the likelihood
of hazards and malfunctions caused by those systems. The
consequences range from merely inconveniences, e.g. poor
quality in a video application, to the loss of human lives.
Only enough confidence can be placed on the system being
developed when functional and non-functional specifications
are completely defined and a rigorous development process is
put in practice.

We claim that preliminary quality assessments should be
part of this rigorous process. The goal is to determine before-
hand whether the system architecture will be able to deliver
the required quality. Engineers should study non-functional
properties during the design of the system to estimate its
probable dependability attributes. The goal is to check whether
the system will be able to meet the requirements and addition-
ally, recommend quality measures to increase reliance on the
system (e.g., supplementary requirements).

Some system engineering methodologies are based on the
encapsulation and specification of system entities (e.g., mod-

ules, components, services). We focus on the composability
of the different entities from a non-functional point of view.
It is a static analysis based on the following ideas: i) the
assessment should not be tailored to a specific non-functional
aspect, ii) there are two types of quality specifications: offered
and required constraints, iii) composability is based on match-
making offered and required constraints, iv) there are config-
uration choices where a choice is defined by some quality
specifications, v) quality constraints shall allow characterizing
any quality dependency in the system.

We formulate composability as a configuration problem
aiming at the selection of the system configuration which
allows satisfying all the selected required constraints. Config-
uration choices represent design alternatives, deployment op-
tions, operation modes or entities adaptability. At the design-
phase, they all can be considered the same regarding our goal:
assessment of non-functional specifications. The benefits of
tackling the problem as a configuration one are: it is common
in plenty of situations e.g., COTS, algorithm selection, run-
time modes; it makes the problem treatable for complex
composition scenarios by enforcing a discrete number of
alternatives. In the drawbacks we can find: it might not be
optimal when the number of options is not finite (it could
try to find a good system configuration but in case there is
no solution it is impossible to test all the alternatives); and it
cannot be used to calculate the value of a property (it is good
to check several values for a property but not to calculate
the valid/optimal value). An unpublished paper [1] deals other
composability approaches.

Model-based engineering takes models and system spec-
ifications as fundamental engineering products and allows
reasoning on them. Enclosing non-functional specifications
with architectural models has been typically used to im-
prove system understanding. Nevertheless, we aim at evalu-
ating those models using a model-driven environment. This
environment is selected for different reasons: consistency
and traceability between models and analyses are seamlessly
achieved, information of the architecture could be used in the
analyses, analyses can be performed within the modeling tool,
coordination among the different engineers working in the
system is eased.

In this work, we study how two modeling languages cope
with composability: the QoS-FT and the MARTE UML
profiles. We have already evaluated the QoS-FT profile to
model non-functional properties in a way that enables further

composability analysis. We create quality specifications using
and extended version of the profile [2] and attach those
specifications to architectural models written in UML. We have
implemented tool-support [3] to extract quality information
from the architectural models. It finds an admissible configu-
ration that satisfies all the constraints using a search algorithm
and custom OCL constraint evaluators. We are also running
some experiments using constraint programming but it is not
currently integrated in our model-driven framework.

We think our work is a good contribution for number
reasons. Previous work in quality of service management
do consider quality levels to group quality specifications but
there is no offered-required matching. In the domain of web
service procurement, they do find the best provider based on
matching providers’ specifications with the client’s required
specification, however, this problem is easier. Additionally,
our work is a sound formalization aiming at evaluating quality
composability, what should be a good step forward to leverage
generic tools (instead of current ad-hoc developments) for
analyzing non-functional issues. Our work is also a good proof
of concept of two modeling languages for non-functional prop-
erties, and a tool has already been implemented to evaluate
quality specifications.

After reviewing some related work, section III formalizes
and formulates the composability assessment based on quality
constraints and levels. Section IV describes the model-driven
analysis process giving a basic example. Section V compares
two modeling approaches to deal with composability analysis
modeling.

II. RELATED WORK

Non-functional requirements are: availability, interoperabil-
ity, maintainability, performance, recovery, reliability, scala-
bility, security, safety, or usability. They can be categorized
according to a quality model e.g.: ISO/IEC 9126-1 [4], IEEE
Std 830-1998 [5], McCall and Matsumoto quality factors [6],
Volere requirements taxonomy [7], or Firesmith requirements
taxonomy [8].

Wherever possible, non-functional requirements have to be
characterized quantitatively. Some of the benefits of quanti-
fying requirements are: i) to challenge, and thus improve,
requirements, ii) to formalize requirements in better ways e.g.,
using mathematical expressions, and iii) to enable validation
and analysis of requirements. To specify requirements quanti-
tatively: first we have to identify attributes of the requirements
that are measurable, and then, to define a metric to express the
attributes. Although quantifying requirements can be difficult,
several techniques can help. In [9] two of the best techniques
for quantification are discussed: Volere’s method [7] and
Planguage [10], although it is recognized that none of them
solves all problems of requirements quantification.

Most of a system’s non-functional requirements are unverifi-
able at subsystem-level and they can even be difficult to test at
the system-level. For example, the end-to-end latency can only
be estimated taking into consideration all the subsystems; the
same stands for the reliability of a system but its computation

may be more complex. However there is work in progress
trying to predict non-functional properties of an assembly, such
as a component-based system, from the known properties of
their parts e.g., SEI’s work in Predictability by Construction
and its initiatives Prediction-Enabled Component Technology
(PECT) and Predictable Assembly from Certifiable Compo-
nents (PACC). Crnkovic et al. [11] classify non-functional
properties according to how they can be derived from the
properties of the components involved. They can be: directly
composable, architecture-related, derived, usage-dependent or
system-environment context. However, the authors acknowl-
edge that it might be difficult to model these dependencies.

As soon as we i) create a quality model, ii) quantify non-
functional specifications as much as possible, iii) and charac-
terize dependencies among the different non-functional prop-
erties, we can carry out the composability study as formulated
in this paper. There still exists the key issue of offered and
required constraints matchmaking. We use a symmetric model
(as recommended in [12]) to model quality specifications
where neither offered nor required constraints are restricted
to single values. We have found in the literature two ap-
proaches, called metrics, to perform the matchmaking namely,
matching [13] and conformance [12]). Matching signifies that
there has to be at least one value of the offer that satisfies
the requirements; conformance means that requirements are
satisfied for every value of the offers. In [14] the concept of
conformance is extended for situations where non-functional
required constraints are not carefully defined. For instance,
a required availability such as 0.95 < A < 0.98 is poorly
defined since an offered availability A ≥ 0.999 does always
satisfy the requirements but it is not included in the range.
So far, we focus on the conformance metric deliberately, as it
seems the only acceptable to deal with dependability. In other
words, critical systems where dependability is the main at-
tribute, require properly defined non-functional specifications.

There exists a similar work in the domain of web service
procurement by Ruiz Cortes et al. and extended by Kritikos et
al. Their goal is to find the best provider based on matching
providers’ offered specifications with the client’s demanded
specifications (what we call required). This problem is ob-
viously far more simple as there is just one configuration
point. Their papers also lack the thorough formalization done
in this paper. In our opinion, it is a very practical work
that uses constraint satisfaction [12], [14] and mixed-integer
programming [15] to create a solver.

III. COMPOSABILITY ASSESSMENT

A. Composability based on quality constraints and levels

Let’s consider the following system entities: a) a service to
perform image processing outputs data of different qualities
according to the available processing and memory resources,
b) the component of a control system has two operation modes,
each one having a different failure rate, and c) a software driver
for a motion-detection sensor whose accuracy depends on the
hardware used existing two options available. Image quality,

resource availability, operation mode, failure rate, hardware
characteristics and detection accuracy are non-functional prop-
erties that should be part of the quality specification.

To study non-functional composability we need offered
(provided) and required quality specifications. An offered
constraint characterizes (at least) a property whose value
might fluctuate during operation provided that the offered
constraint is met. That is, only the satisfaction of the offered
constraint is ensured but not a steady value for the property
(-ies) involved. On the other hand, a required constraint is
a condition over the values taken by the properties. In the
composition, we need to ensure that for every value that meets
the offered constraint all the required constraints are satisfied.
One of the key issues of evaluating quality specifications is
the matchmaking between offered and required constraints.
For instance, the first mode of entity b) has a value for its
failure rate in the range (0, 0.01), and the second mode in
the range (0, 0.05). There is a required condition to be held:
failure rate < 0.03. This required condition is satisfied for
any value of the first range, but this is not true for the second
range. If the entity is configured using the second mode, the
value of the property could be lower than 0.03, but it might
be greater and this is not admissible.

Each of the three entities before has a configuration choice.
The choice implies a) an adaptable entity, b) a deployment
choice, and c) a design choice. Each option of the choice
is called quality level and it is represented with the set of
quality constraints. The constraints in the set cannot be set
up independently. For instance, to set up an offered constraint
there is a need to set up first a specific required constraint
(e.g., for entity a) to provide high accurate data of there
is an increase in demand of available resources). A system
configuration is a selection of one quality level for each
choice. We will also consider configuration constraints which
represent high-level limitations to system configurations.

B. Concepts formalization

Let xi be the variable representing the non-functional prop-
erty i and Dom(xi) the domain of the variable. Let pi be
a specific value taken for the variable xi. Let’s also define
the tuples x, to represent the collection of non-functional
properties in the system, and p, to represent an assignment σ
of values to all the properties being considered in the problem
(e.g., an observation of the system).

x = (x1, . . . , xI)

p = (p1, . . . , pI) = σ(x)
pi = σ(xi) ∈ Dom(xi)

Let yj be the variable representing the configuration choice
j and Dom(yj) the integer domain of the variable. Let lj be a
specific option (level, mode,. . .) taken for the choice yj . The
tuples y and l represent the collection of configuration choices
and a set-up of selected options respectively.

y = (y1, . . . , yJ)

l = (l1, . . . , lJ) = σ(y)
lj = σ(yj) ∈ Dom(yj)

Offered, required and configuration constraints represent
dependencies among different variables i.e., relations. They
can be modeled with boolean mathematical statements: O(x),
R(x), and F (y). Notice that the mathematical relations are:
O = {x|O(x)}, R = {x|R(x)} and F = {y|F (y)}. An
assignment of values p satisfies a (required) constraint when
the mathematical statement (R(x)) is true so p belongs to the
relation (R).

Let’s consider the following three constraints: ‘a response
to some warning event shall have a soft deadline of 50 ms (for
an optimally efficient reaction) and a hard deadline of 200 ms
(to guarantee that no damage takes place)’, ‘a warning signal
will be generated when temperature is over 100◦C; it shall be
audible (at least 1 Pa.) and have a minimum inter-arrival time
of 300 secs.’, and ‘using the component A of vendor brand
implies deploying the component B of the same vendor’. Each
constraint is of one type and they could be expressed with
mathematical statements:

R(x) = R(Ds, Dh) ≡ (Ds <= 50 ∧Dh <= 200)

O(x) = O(p, tia) ≡ (p >= 1 ∧ tia >= 300)

F (y) = F (vA, vB) ≡ (vA = brand⇒ vB = brand)

The reader should note that, in the analysis, a set of
constraints have to be satisfied together and some of the
constraints could involve the same non-functional properties.
For example, there the following conflicting constraints (where
p is the price and bw the bandwidth) cannot be satisfied
together ¬∃(bw, p) (R1(bw) ∧R2(bw, p) = true):

R1(x) = R(bw) ≡ (bw >= 2, 048)

R2(x) = R(p, bw) ≡ (p <= 1, 000 ∧ p = 0.5× bw)

A quality level can be represented using a collection of
constraints. We could represent it as a triple Lj of sets: the
offered constraints in the level, the required constraints, and
the configuration constraints. Any element of the triple could
be empty.

Lj = ({Oj1(x), . . . }, {Rj1(x), . . . }, {Fj1(y), . . . })
= (LO

j , L
R
j , L

F
j)

The previous definition of quality level is very useful for
analysis implementations (constraint evaluation) because it
keeps constraints separated. However, aiming at formalizing
the problem, it is more convenient to use the definition lj
based on logical conjunctions of statements.

lj = (Oj1(x) ∧ . . . , Rj1(x) ∧ . . . , Fj1(y) ∧ . . .)
= (Olj (x),Rlj (x),Flj (y))

l = (∧jOlj (x),∧jRlj (x),∧jFlj (y))
= (Ol(x),Rl(x),Fl(y))

C. Problem formulation

Only when system engineers have defined non-functional
properties, quality constraints and quality levels, they can
carry out a composability study to check whether the different
entities can be assembled from a quality point of view.
The problem formulation is three-fold: i) is it possible to
meet existing requirements given existing entities and levels?,
ii) which configuration allows satisfying the requirements?,
iii) which of these configurations is the best one according
to certain criteria? There are several concepts related to the
problem raised:
Configuration. A configuration is a set-up of levels. One level

has to be selected for each configuration choice.
Admissible configuration. It is a configuration that ensures the

composability condition given by Equation 2. The col-
lection of every admissible configuration l is represented
with S in Equation 1.

Optimal admissible configuration. Admissible configurations
can be compared if there exists a function f(l)|l∈S to
compare them. If we suppose that the higher the function
value the better the system configuration, it has to fulfill
the following equation:

l∗ ∈ S | ∀l ∈ S : f(l∗) ≥ f(l)

Valid observation. It stands for any assignment of values to
the non-functional properties (p) reachable within an
admissible configuration.

Feasible region. It is the space created joining every valid
observation.

An admissible configuration is the one that, belonging to
the relation Fl, defines an offered space that is included in the
required space it also defines.

S = {l ∈ Fl | Ol ⊆ Rl} (1)

Expanding the expression and defining the formalisms
O(y, x), R(y, x) and F(y) to allow using the existential quan-
tifier on y, we get the admissibility condition as a predicate
logic boolean formula.

S = {l | Fl(l) ∧ ∀p(Ol(p)⇒ Rl(p))}
O(l,p)⇔ Ol(p)
R(l,p)⇔ Rl(p)
F(l)⇔ Fl(l)

∃l∀p : F(l) ∧ (O(l,p)⇒ R(l,p)) (2)

D. Solver methods

After modeling the composability problem raised in this
paper, it is possible to study different solver alternatives. The
problem faced is not a first-order logic: there are variables that
range over individuals (xi) but also variables that range over
sets of individuals (yj = lj defines a set of individuals by
means of Olj (x),Rlj (x),Flj (y)). We contemplate three key
issues to decide the solver to use.

1) Cardinality of the domains of yj . If they are all finite, a
solver could use a tree-search algorithm to traverse the
different configurations.

2) What the relation Ol says about x. It might define ranges
pi,min ≤ xi ≤ pi,max or even isolated values xi = pi.
This issue is very important since the required constraints
must be satisfied for every value in the offer.

3) The type and complexity of the statement Rj∗(x). Linear
functions might allow using linear programming tech-
niques. Monotone functions should ease the evaluation
of requirements for every value in the offer.

IV. MODEL-DRIVEN EVALUATION

A. Analysis process

Most model-driven dependability analysis follow the same
steps: i) engineers annotate model elements of the system
architecture with dependability attributes, ii) a model transfor-
mation extracts the required information from the architectural
models building an analysis model, iii) the analysis is per-
formed giving a pass/fail result or providing extra annotations
onto the architecture. The analysis can be performed within
the modeling tool or using an external dependability tool.
This decision usually depends on how difficult the analysis
execution is. However, it should be possible to launch the
process from the modeling tool. Model-driven engineering
techniques act as a tool-bridge. Tool integration is easier
when the semantics used for the annotations correspond to
the semantics of the analysis. Model transformations help to
couple both semantics.

B. On a modeling tool

We [2], [3] use UML as the modeling language to specify
the architecture of the system. One method [16] to extend
UML is by means of a UML profile, using stereotypes and
tagged-values to annotate model elements. We also need
a language to define quality constraints. We use Rational
Software Architect to create the architectural models. We
export them into the Eclipse Modeling Framework. Atlas
Transformation Language is used to build the analysis models
from the information of the architectural models. The code
to launch model transformations and execute the analysis is
implemented using the Java programming language.

We have considered two approaches to model quality com-
posability: QoS-FT + OCL and MARTE + VSL. The first
approach uses the UML Profile for Modeling QoS and Fault
Tolerance Characteristics and Mechanisms and the Object
Constraint Language. In previous work [2], we have worked
with these two languages to model quality adaptability. Nev-
ertheless, only some of the concepts described in that work
are needed to model a composability analysis. The second
approach has not been implemented yet. It will use the UML
Profile for Modeling and Analysis of Real Time and Embed-
ded Systems and the Value Specification Language. MARTE
considers three annotation mechanisms: (instance specifica-
tion) slots, tagged-values, and constraints. While there exist

many similitudes between the two modeling approaches, the
MARTE mechanism that uses tagged-values is not provided
by the QoS-FT profile. We will compare the two approaches
in the section V.

C. On the analysis tool

Although this is not the purpose of this paper, we want to
give a hint of the solvers used and briefly motivate the election
according to the issues of section III-D. So far, we have only
considered finite domains for yj .

The first approach was to implement a solver based on a
depth-first search algorithm. It was implemented in Java and
it is integrated in the modeling environment. It traverses the
search space, evaluating (using extensions of the Eclipse OCL
plugin) at each node those required constraints that can be
evaluated because all the variables in the constraint are defined.
The solver requisites are: Oj∗(x) defining ranges of values
and Rj∗(x) being monotone functions. It was complete and
optimal for the problem formulated, it was not very efficient
though.

Currently, we are using a solver based on constraint satis-
faction (it uses the constraint programming language Comet).
This solver implements constraint solving and constraint prop-
agation techniques, managing constraints much better. The
solver requisites are: Oj∗(x) do not have to be ranges but
a set-up of Ol(x) should ultimately define ranges of values,
and Rj∗(x) are monotone functions.

We studied other alternatives e.g., linear programming and
mixed integer programming. Its applicability highly depend on
the type of constraints. However, constraint satisfaction allows
pluging-in ad-hoc constraint evaluators and propagators. We
do realize that other alternatives might suit much better under
certain conditions.

D. Example

The best way to show what the analysis should do is using a
basic example. It has three configuration choices: transmission
driver, network reservation and network access technology.
Each choice has different options (quality levels). Each option
implies different types of constraints: offered, required and
configuration. The space of the offers has to be included in
the space of the requirements and the configuration has to meet
configuration constraints.
Choice tx = {lo,hi}
Opt lo = ({},{0<=rate<=1024},{},{})
Opt hi = ({},{0<=rate<=4096, priority==guaranteed},{},{})

Choice rsvp = {bronze, silver, gold}
Opt bronze = ({0<=rate<=2048, priority==best-effort},{},{})
Opt silver = ({0<=rate<=2048, priority==guaranteed},{},{})
Opt gold = ({0<=rate<=10240, priority==guaranteed},{},{})

Choice acc = {isdn, t1}
Opt isdn = ({},{},{acc==isdn => rsvp==bronze})
Opt t1 = ({},{},{})

There are 12 (2 × 3 × 2) possible configurations, and it is
easy to check that only 5 are 5 admissible:
Conf c1 = (lo, bronze, isdn)
Conf c2 = (lo, bronze, t1)
Conf c3 = (lo, silver, t1)

Conf c4 = (lo, gold, t1)
Conf c5 = (hi, gold, t1)

We are working with examples containing thousands of
possible configurations and the solver successfully computes
admissible configuration in a matter of seconds.

V. COMPOSABILITY ANALYSIS MODELING

A. Modeling requirements

We have identified the modeling-support required to model
a composability analysis:
1. Non-functional properties types to define the quality

model. Engineers could use a standard quality model
or create an ad-hoc model which could be reused in
different projects.

2. Non-functional properties used in constraints as variables.
3. Constraints on non-functional properties might be

implicit, or explicit when they use a specification
language. Different constraints should be able to involve
the same non-functional properties. There shall also be a
mechanism to specify whether the constraint is offered
or required.

4. Quality level which groups the constraints that must be
satisfied together. A set-up of levels is the output of the
analysis.

5. Configuration choice. They are variables of the configura-
tion constraints.

6. Configuration. The system configuration may be defined by
a set of active quality

7. Configuration constraints. If they are explicit, they can
use the same mechanisms used for constraints on non-
functional properties provided that all the variables in the
constraints have to be configuration choices. levels.

Other modeling elements could be desired but we want
to focus on the essential mechanisms required to analyze
composability. For instance, to model the adaptability of a
system architecture based on a given component model, we
need to link a configuration choice with the adaptable compo-
nent. Another desired feature would be to provide modeling-
support for the attachment of non-functional properties to
system elements.

B. Implicit or explicit constraints

Constraints are conditions for declaring some semantics
between more than one model element (for instance, a delay
between two different events). One of the key decisions to
create the modeling-support for composability analyses is
whether to use explicit or implicit constraints. An explicit
constraint is an expression which uses a specification language
and includes all the information required to evaluate the
constraint. On the other hand, the information required to
evaluate an implicit constraint is spread in several parts of the
model. An example of explicit constraint is the attachment of
a non-functional value with the purpose of fixing the value
of the non-functional property. Another implicit constraint
exists when some tasks (each one defining their periods and

deadlines) are allocated in the same execution host, the host
has an scheduler based on fixed priorities, and it is clear but
not explicitly expressed that the tasks have to be schedulable.
The following expressions are examples of explicit constraints.
Mean and Jitter are constants defined somewhere in the model
but unequivocally addressed; FailureRate, VideoRate, D and C
are variables; rateMonotonic() and ≤ are functions.

FailureRate ≤ 0.001

Mean− Jitter ≤ V ideoRate ≤ Mean + Jitter
rateMonotonic((20ms, 5ms), (40ms, 10ms), (D,C))

To provide an open modeling framework i.e., not tailored to
a particular dependability concern, explicit constraints shall be
allowed. The main benefit of implicit constraints is usability.
The two methods for constraints specification are not exclusive
although the composability analysis tool takes explicit con-
straints as input so, a semantics-aware model transformation
has to create explicit constraints from the implicit constraints’
parameters.

C. Profiles comparison

This section compares the two approaches we have con-
sidered, QoS-FT + OCL and MARTE + VSL, focusing on
satisfying the modeling requirements outlined in section V-A.

1. A type of non-functional property (transmission
rate). QoS-FT uses a UML Classifier (communication-
throughput) stereotyped with QoSCharacteristic; a character-
istic might have several UML Propertie(s) (rate) stereotyped
with QoSDimension. MARTE uses a TupleType/DataType
(NFP DataTxRate) stereotyped with nfpType. They are rather
different approaches with two important differences: using
Classifier versus using DataType, and the location of the
attributes of the non-functional property. Note that property
attributes (unit, direction) are defined in QoS-FT in the type
of the non-functional property.
<<QoSCharacteristic>> Classifier communication-throughput
<<QoSDimension>> Property rate
: real {unit(bit/sec), direction(increasing)}

<<nfpType>> TupleType NFP_DataTxRate
Property expr : VSL_Expression
Property source : SourceKind
Property statQ : StatisticalQualifierKind
Property dir : DirectionKind
Property mode : String[*]
Property value : Real
Property unit : DataTxRateUnitKind
Property precisison : Real

The QoS-FT standard includes a QoSCatalog that, even
though it is not part of the standard, could be reused in users’
applications. On the other hand, MARTE does include non-
functional properties types that can be reused.

2. A non-functional property (rate) of the previous type.
QoS-FT uses an InstanceSpecification (throughput) of a
QoSCharacteristic (communication-throughput) stereotyped as
QoSValue. The QoSValue has to be attached to the modeling
element it constrains. Only one property attribute (rate) is
given because the rest are defined with the type. MARTE
uses a Slot (rate) of a Property that should be previously

created in the user model. In the definition of the property
(NFP DataTxRate) the default values for some tuple members
can be given (max, decr).
<<QoSValue>> InstanceSpecification throughput

: communication-throughput
Slot rate: 2048

Classifier Network
<<nfp>> Property rate
: NFP_DataTxRate = (statQ=max,dir=decr)

InstanceSpecification nw : Network
Slot rate = (value=2048,unit=b/s,source=req)

3. A constraint on the non-functional property (called
two) previously defined. QoS-FT provides the stereotypes
QoSOffered and QoSRequired to model quality constraints
while MARTE provides the stereotype nfpConstraint using
a tagged-value to identify whether it is a required or an
offered constraint. We use OCL for QoS-FT (a UML Opaque-
Expression) and VSL for MARTE (a VSL Expression) as
specification language. The context of the OCL constraint
is a QoSCharacteristic (communication-throughput), and the
namespace of the VSL specification is a modeling element
(Network).
<<QoSOffered>> Constraint two
{context communication-throughput inv: rate <= 2048}

<<nfpConstraint>> Constraint two {kind=offered}
{rate <= (2048,b/s)}

4. A quality level (bronze) including the previous constraint.
In QoS-FT, it is modeled with a State stereotyped with
QoSLevel. A state owns a constraint called stateInvariant that
has to be true to be in the state. If we have to include
several constraints we can use the stereotype QoSCompound-
Constraint to group them. In MARTE, a constraint can have
associated (using a tagged-value) one or more State(s) stereo-
typed with Mode. In those modes the constraint should be
taken into account.
<<QoSLevel>> State bronze
Constraint stateInvariant : [two,best-effort]

<<Mode>> State bronze
<<nfpConstraint>> Constraint two
{kind=offered, mode=[bronze,silver]}
{rate >= (2048,b/s)}

5. A configuration choice (rsvp) including the previous
level. MARTE has a mechanism, called mode behavior, to
specify a set of mutually exclusive modes. To create a config-
uration choice we need to create a StateMachine stereotyped
with ModeBehavior. QoS-FT does not provide any mechanism
to specify a configuration choice, but in our work [2] we
augmented the profile with a stereotype called QoSExternal-
Behavior which extends StateMachine as well.
<<QoSExternarBehavior>> StateMachine rsvp
<<QoSLevel>> State submachineStates : [bronze,silver,gold]

<<ModeBehavior>> StateMachine rsvp
<<Mode>> State submachineStates : [bronze,silver,gold]

6. A configuration (c2) can be defined by a set of selected
quality levels. MARTE has the stereotype Configuration to
model it. It extends UML Package or UML StructuredClassi-
fier and has a collection of modes annotated as tagged-values.

For QoS-FT, we do not recommend the use of QoSCom-
poundLevel; it is a concept of the standard document but
it does not have a stereotype associated and it does not
have the desired semantics when used in combination with
QoSCompoundConstraint. We do not have either a similar
concept in our previous work.
<<Configuration>> Package c2 {mode=[lo,bronze,t1]}

The semantics of active state in UML is rather complicated
and we would like to define constraints which use states and
state machines to indicate when a quality level is selected.
We propose: to model configurations as QoSCharacteristic(s)
in QoS-FT, and to add propertie(s) to the configuration in
MARTE. The main reason is that configuration constraints
will be handled as constraints on non-functional properties.
This proposal does not modify any concept of the profiles.
<<QoSCharacteristic>> Classifier conf
<<QoSDimension>> Property tx : State
<<QoSDimension>> Property rsvp : State
<<QoSDimension>> Property acc : State

<<QoSValue>> InstanceSpecification c2 : conf
Slot tx: lo
Slot rsvp: bronze
Slot acc: t1

<<Configuration>> Class c2 {mode=[tx,rsvp,acc]}
Property tx : Mode = lo
Property rsvp : Mode = bronze
Property acc : Mode = t1

7. Configuration constraint. The definition of configuration
constraints is straightforward if we use previous specifications.
The context of the ocl expression is the QoSCharacteristic
conf, and the namespace of the value specification is config-
uration itself.
<<QoSLevel>> State isdn
Constraint stateInvariant : [cstr]

<<QoSRequired>> Constraint cstr
{context conf
inv: acc=isdn => rsvp=bronze}

<<Mode>> State isdn
<<nfpConstraint>> Constraint cstr
{kind=required, mode=[isdn]}
{acc==isdn? rsvp==bronze : true}

VI. CONCLUSION

We have formulated the composability problem as a config-
uration problem based on matchmaking offered and required
quality constraints. As we deal with non-functional properties
and constraints in a homogeneous and generic way, we do
consider the formulation could leverage the creation of generic
tools to analyze non-functional properties substituting ad-
hoc developments. However, we recognize the existence of
composability problems our formulation cannot solve. For
instance, to compute resource availability or resource usage
e.g., if two video streaming algorithms require a minimum
bandwidth of 128 kbps it is not possible to calculate that the
offered constraint of the network has to be: bw >= 256 kbps.

This paper also enumerates the requirements for modeling
composability analyses and proposes and studies two ap-
proaches. Only the QoS-FT approach could not meet all the
requirements and needed a small extension. Both approaches

are approximately similar and the decision of which one to use
should be based on two points: usability and the expressiveness
of the specification language of the constraints. In our opinion,
the MARTE approach is more usable and the QoS-FT allows
more complex constraint specifications.

REFERENCES

[1] J. F. Briones, M. A. de Miguel, J. P. Silva, and A. Alonso, “International
conference on software composition,” 2010, submitted to.

[2] J. F. Briones, M. A. de Miguel, A. Alonso, and J. P. Silva, “Mod-
eling quality of service adaptability,” in Enterprise Distributed Object
Computing Workshops (Advances in Quality of Service Management),
International Conference on, vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2008, pp. 50–27.

[3] ——, “Quality of service composition and adaptability of software archi-
tectures,” in 12th IEEE International Symposium on Object component
service-oriented Real-time distributed Computing, 2009.

[4] ISO/IEC 9126-1, “Software engineering - product quality - part 1:
Quality model,” ISO/IEC, Tech. Rep. ISO/IEC 9126-1:2001, June 2001.

[5] IEEE Std 830-1998, “IEEE recommended practice for software require-
ments specifcations,” IEEE, Tech. Rep. IEEE Std 830-1998, June 1998.

[6] J. A. McCall and M. T. Matsumoto, “Software quality measurement
manual,” General Electric Company and Rome Air Development Center,
Tech. Rep. RADC-TR-80-109 Part II, April 1980.

[7] S. Robertson and J. Robertson, Mastering the Requirements Process.
Addison-Wesley Professional, Aug. 1999.

[8] D. G. Firesmith, “Common concepts underlying safety, security, and sur-
vivability engineering,” Carnegie Mellon Software Engineering Institute,
Technical Note CMU/SEI-2003-TN-033, December 2003.

[9] N. Maiden, “Improve your requirements: Quantify them,” IEEE Soft-
ware, vol. 23, no. 6, pp. 68–69, 2006.

[10] T. Gilb, Competitive Engineering: A Handbook For Systems Engi-
neering, Requirements Engineering, and Software Engineering Using
Planguage. Butterworth-Heinemann, Aug. 2005.

[11] I. Crnkovic, M. Larsson, and O. Preiss, “Concerning predictability
in dependable component-based systems: Classification of quality
attributes,” in Architecting Dependable Systems III, vol. 3549.
Springer Berlin / Heidelberg, 2005, pp. 257–278. [Online]. Available:
http://www.springerlink.com/content/dpc7hnegdgdfnn5a

[12] A. R. Cortés, O. Martı́n-Dı́az, A. D. Toro, and M. Toro, “Improving the
automatic procurement of web services using constraint programming,”
Int. J. Cooperative Inf. Syst., vol. 14, no. 4, pp. 439–468, 2005.

[13] S. Degwekar, S. Y. W. Su, and H. Lam, “Constraint specification and
processing in web services publication and discovery,” in ICWS ’04:
Proceedings of the IEEE International Conference on Web Services.
Washington, DC, USA: IEEE Computer Society, 2004, p. 210.

[14] K. Kritikos and D. Plexousakis, “Evaluation of QoS-based web service
matchmaking algorithms,” in IEEE Congress on Services - Services
2008, vol. Part I. Honolulu, Hawaii, USA: IEEE Computer Society,
6-11 July 2008, pp. 567–574.

[15] ——, “Mixed-integer programming for QoS-based web service match-
making,” IEEE Trans. Serv. Comput., vol. 2, no. 2, pp. 122–139, 2009.

[16] M. de Miguel, J. Briones, J. Silva, and A. Alonso, “Integration
of safety analysis in model-driven software development,” IET
Software, vol. 2, no. 3, pp. 260–280, 2008. [Online]. Available:
http://link.aip.org/link/?SEN/2/260/1

