ABSTRACT

In this paper, we describe a content ontology design pattern to represent objects that can be simple or aggregated. The aggregation relation refers to several objects gathered in another object acting as a whole; all these objects should belong to the same concept in the model.

Keywords

Ontology design patterns, mereology, aggregation.

1. INTRODUCTION

Mereological relationships are one of the basic structuring primitives of the universe, and many applications require representations of them (catalogues of parts, fault diagnosis, anatomy, geography, etc.) [3].

We usually have the need of representing objects that are made up of other types of object. In these situations, we can use the part-of [1] pattern to represent transitive mereological relationships. Some examples can be “Brain and heart are parts of the human body” or “Substantia nigra is part of brain”. In addition, we can use the componency [1] pattern to distinguish between parts and proper parts in a non transitive fashion. An example of this case can be “The turbine is a proper part of the engine; both are parts of a car. Furthermore, the engine and the battery are proper parts of the car”.

However, sometimes we need to represent objects that can be made up of objects that belong to the same concept. For this reason, we have created the SimpleOrAggregated pattern to represent aggregation relationships, both transitive and non transitive, between objects that belong to the same concept in the model. An example of this situation can be “aggregated service provider is formed by simple or aggregated service providers”.

2. PATTERN DESCRIPTION

2.1 Intent

The goal of this pattern is to represent objects that can be simple or aggregated (that is, several objects gathered in another object acting as a whole).

The main difference between the aggregation relation and other mereological relationships (such as part-of or componency) is that the aggregated object and its aggregated members should belong to the same concept.

2.2 Solution Description

As it can be observed in Figure 1 the class "ObjectByCardinality" has been created to classify simple and aggregated objects into its subclasses "SimpleObject" and "AggregatedObject", respectively. These subclasses are disjoint among them.

![Figure 1. Graphical representation of the SimpleOrAggregated pattern.](image-url)
member just to the next level (that is, A has B as direct aggregated member).

Finally, the class "AggregatedObject" has been defined as equivalent to those things that have some values for the property "hasAggregatedMember". This modelling allows the automatic classification of aggregated objects in this class when a reasoner is applied.

2.3 Consequences

This content pattern allows designers to represent both simple individuals of a given concept (that is, an individual that is made up of itself) and aggregated individuals of a given concept (that is, an individual that is made up of several individuals of the same concept). In summary, this pattern allows to represent both simple objects and aggregated objects and their members.

In addition, this pattern can be used to detect the following contradictory situation by means of applying a reasoner: "to instantiate the relationship "hasAggregatedMember" for an Object that belongs to "SimpleObject"". This situation represents a consistency error and it is detected when a reasoner is applied due to the following modelling decisions included in the pattern: (a) "AggregatedObject" class represents the "hasAggregatedMember" domain and (b) "AggregatedObject" is disjoint with "SimpleObject".

3. PATTERN USAGE EXAMPLE

This pattern has been applied to different domains such as service providers and context sources during the mIO! ontology network development.

As an example, we show in Figure 2 the application of the SimpleOrAggregated pattern to represent that a service provider can be classified as simple or aggregated. Each service provider can be also classified with respect to the type of service it provides (e.g. cultural, entertainment, food, health, etc.).

4. Related work

The origin of this pattern is the modelling of service providers and context sources into the mIO! ontology network within the Spanish project mIO! development. The pattern has also been applied to computing and storage resource modelling in the Metascheduler ontology in the context of the Spanish project España Virtual.

5. Summary and Outlook

The SimpleOrAggregated pattern provides a mechanism to classify objects as simple or aggregated objects depending on whether they are an aggregation of some objects. This classification is compatible with another possible classification of objects.

6. ACKNOWLEDGMENTS

This work has been partially supported by the Spanish project mIO! (CENIT-2008-1019).

7. REFERENCES

2 http://www.cenitmio.es/
4 http://www.españavirtual.org/