Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling

Jevtić, Aleksandar (2011). Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling. Tesis (Doctoral), E.T.S.I. Telecomunicación (UPM).

Descripción

Título: Swarm intelligence: novel tools for optimization, feature extraction, and multi-agent system modeling
Autor/es:
  • Jevtić, Aleksandar
Director/es:
  • Andina de la Fuente, Diego
  • Jamshidi, Mo
Tipo de Documento: Tesis (Doctoral)
Fecha: 2011
Materias:
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (4MB) | Vista Previa

Resumen

Abstract Animal swarms in nature are able to adapt to dynamic changes in their envi-ronment, and through cooperation they can solve problems that are crucial for their survival. Only by means of local interactions with other members of the swarm and with the environment, they can achieve a common goal more efficiently than it would be done by a single individual. This problem-solving behavior that results from the multiplicity of such interactions is referred to as Swarm Intelligence. The mathematical models of swarming behavior in nature were initially proposed to solve optimization problems. Nevertheless, this decentralized approach can be a valuable tool for a variety of applications, where emerging global patterns represent a solution to the task at hand. Methods for the solution of difficult computational problems based on Swarm Intelligence have been experimentally demonstrated and reported in the literature. However, a general framework that would facilitate their design does not exist yet. In this dissertation, a new general design methodology for Swarm Intelligence tools is proposed. By defining a discrete space in which the members of the swarm can move, and by modifying the rules of local interactions and setting the adequate objective function for solutions evaluation, the proposed methodology is tested in various domains. The dissertation presents a set of case studies, and focuses on two general approaches. One approach is to apply Swarm Intelligence as a tool for optimization and feature extraction, and the other approach is to model multi-agent systems such that they resemble swarms of animals in nature providing them with the ability to autonomously perform a task at hand. Artificial swarms are designed to be autonomous, scalable, robust, and adaptive to the changes in their environment. In this work, the methods that exploit one or more of these features are presented. First, the proposed methodology is validated in a real-world scenario seen as a combinatorial optimization problem. Then a set of novel tools for feature extraction, more precisely the adaptive edge detection and the broken-edge linking in digital images is proposed. A novel data clustering algorithm is also proposed and applied to image segmentation. Finally, a scalable algorithm based on the proposed methodology is developed for distributed task allocation in multi-agent systems, and applied to a swarm of robots. The newly proposed general methodology provides a guideline for future developers of the Swarm Intelligence tools. Los enjambres de animales en la naturaleza son capaces de adaptarse a cambios dinamicos en su entorno y, por medio de la cooperación, pueden resolver problemas ´ cruciales para su supervivencia. Unicamente por medio de interacciones locales con otros miembros del enjambre y con el entorno, pueden lograr un objetivo común de forma más eficiente que lo haría un solo individuo. Este comportamiento problema-resolutivo que es resultado de la multiplicidad de interacciones se denomina Inteligencia de Enjambre. Los modelos matemáticos de comportamiento de enjambres en entornos naturales fueron propuestos inicialmente para resolver problemas de optimización. Sin embargo, esta aproximación descentralizada puede ser una herramienta valiosa en una variedad de aplicaciones donde patrones globales emergentes representan una solución de las tareas actuales. Aunque en la literatura se muestra la utilidad de los métodos de Inteligencia de Enjambre, no existe un entorno de trabajo que facilite su diseño. En esta memoria de tesis proponemos una nueva metodologia general de diseño para herramientas de Inteligencia de Enjambre. Desarrollamos herramientas noveles que representan ejem-plos ilustrativos de su implementación. Probamos la metodología propuesta en varios dominios definiendo un espacio discreto en el que los miembros del enjambre pueden moverse, modificando las reglas de las interacciones locales y fijando la función objetivo adecuada para evaluar las soluciones. La memoria de tesis presenta un conjunto de casos de estudio y se centra en dos aproximaciones generales. Una aproximación es aplicar Inteligencia de Enjambre como herramienta de optimización y extracción de características mientras que la otra es modelar sistemas multi-agente de tal manera que se asemejen a enjambres de animales en la naturaleza a los que se les confiere la habilidad de ejecutar autónomamente la tarea. Los enjambres artificiales están diseñados para ser autónomos, escalables, robustos y adaptables a los cambios en su entorno. En este trabajo, presentamos métodos que explotan una o más de estas características. Primero, validamos la metodología propuesta en un escenario del mundo real visto como un problema de optimización combinatoria. Después, proponemos un conjunto de herramientas noveles para ex-tracción de características, en concreto la detección adaptativa de bordes y el enlazado de bordes rotos en imágenes digitales, y el agrupamiento de datos para segmentación de imágenes. Finalmente, proponemos un algoritmo escalable para la asignación distribuida de tareas en sistemas multi-agente aplicada a enjambres de robots. La metodología general recién propuesta ofrece una guía para futuros desarrolladores deherramientas de Inteligencia de Enjambre.

Más información

ID de Registro: 7206
Identificador DC: http://oa.upm.es/7206/
Identificador OAI: oai:oa.upm.es:7206
Depositado por: Archivo Digital UPM
Depositado el: 23 May 2011 15:28
Ultima Modificación: 20 Abr 2016 16:24
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM