A new envelope with high energy-efficient insulation

Luis A. Alonso, Benito Lauret, Fernando Alonso

UPM, Madrid, Spain

This article examines, from the insulation viewpoint, a new lightweight, slim, high energy efficient, light-transmitting envelope system, providing for seamless, free-form designs for use in architectural projects. The research was based on envelope components already existing on the market, especially components implemented with granular silica gel insulation, as this is the most effective translucent thermal insulation there is today. The tests run on these materials revealed that there is no single component that has all the features required of the new envelope model. However, some do have properties that could be exploited to generate this envelope, namely, the vacuum chamber of the VIP panels, the monolithic aerogel used as insulation in some prototypes, and the reinforced polyester barriers. By combining these three design components - the high-performance thermal insulation of the vacuum chamber, combined with monolithic silica gel insulation and the free-form design potential provided by materials like reinforced polyester and epoxy resins - we have been able to define and test a new, variable geometry, envelope insulation system with excellent energy-saving levels.

1. Introduction

One of the major challenges for architects today is the insulation of buildings with a view to achieving energy efficiency that redounds to not only economic and environmental savings but also user comfort and occupancy conditions.

Public administrations and professional associations the world over are trying to remedy the problem of energy inefficient buildings, but these initiatives run out of steam when archaic, poorly evolved techniques that are ill-adapted to modern-day demands are used to build the envelope (skin) of our dwellings [1][2].

Most of a building's energy transfers with the environment are through its skin, which is responsible for most of the energy losses. The new world energy regulations, called upon to regulate building energy efficiency, are more demanding than the former and obsolete regulations drawn up in an age when energy was very cheap. International examples are the Commission of the European Communities in the First Assessment of National Energy Efficiency Action Plans [3], the United States Department of Energy (DOE)'s Commercial Building Initiative (CBI) [4] or the "Evaluation Standard for Green Building" [5] passed by the Chinese Ministry of Construction (MoC).

These policies indirectly promote an increase in the thicknesses of outer walls, as, for centuries, they were the only way of properly insulating a building. Some architects like the Office for Metropolitan Architecture (OMA) [6] led by Rem Koolhaas or François Roche [7], among others, have tried to directly or
Indirectly promote a policy whereby the façade does not compute as buildable area. This way they could make the outer skin thicker or generate multilayered skin components.

Other lines of research aim to minimize the building skin thickness by optimizing its energy performance, also adding new architectural properties, such as the possibility of generating a structural skin or self-supporting façade or the option of providing tools to meet the architectural design requirements for modeling the façade according to environmental factors, such as solar capture, protection from environmental elements, or for purely aesthetic purposes. These are alternatives that are now being studied and implemented by the Pritzker Architecture Prize winners Zaha Hadid [8], Frank Gehry [9], Rem Koolhaas [10], Herzog & de Meuron [11], Jean Nouvel [12], Kazuyo Sejima + Ryue Nishizawa (SANAA) [13] and Oscar Niemeyer [14], as well as other renowned architects like Future System, Toyo Ito, Ben van Berkel, West 8, Plot-Big, among many others, in their designs.

This research looks to those alternatives and to technology for new forms of generating energy efficiency and new materials developed from materials in use today. To determine the feasibility of the new envelope system that we propose, we have compiled, examined and run laboratory tests on the information and material provided by commercial brands. We have compared this information with data supplied by other independent scientific tests run by Moner-Girona, Roig, and Molins [15][16][17][18] in the field of hybrid aerogels and organically modified silica aerogels as a means of material improvement and by independent laboratories like Zae Bayern in Germany [19] or the University of Denmark [20].

Specifically, this article sets out a novel envelope system based on a study of the families of lightweight commercial panels manufactured using an envelope assembly of translucent, silica gel-based thermal insulation materials, and determines its validity as a lightweight, slim, high energy efficient, light-transmitting (semitransparent) envelope component for use on the building market.

The remainder of the article is structured as follows. Section 2 presents a theoretical study of the system, explaining similar types of existing systems, divided into two major groups - translucent and transparent envelopes, discussing their properties and appraising the strengths and weaknesses of such systems. Section 3 describes an experimental study combining computer simulation and empirical trials. This is followed in Section 4 by a description of the proposed façade system design (F2TE3), explaining the solutions adopted for the new system and how it improves on other existing systems. Finally, Section 5 sets out the conclusions of this research.

2. Theoretical study of the system

Today's architectural vanguard demands a building system such as is proposed in this research: a lightweight, variable geometry, seamless high energy performance system that also permits the passage of natural light and backlighting. No system combining all these features exists as yet, and similar systems are not absolutely free form and translucent, are not seamless and/or have a very limited thermal response. From the viewpoint of energy performance, we found that the insulation that best meets the needs of the new system that we propose is aerogel [21][22].

The four advantages of Aerogel are:

a) Transparency: Monolithic aerogel light transparency can be as high as 87.6%. [23].
b) Insulation: It is an excellent insulator. The thermal performance of a 70mm nanogel-filled vacuum insulated panel (VIP) is better than a 270 mm-thick hollow wall [24].
c) Lightness: aerogel is only three times heavier than air [25].
d) Versatility: monolithic aerogel can be shaped as required.
In the following, we analyze translucent and transparent commercial panels, setting out their strengths and weaknesses and our findings as a result of this study.

2.1 Translucent systems
We have analyzed systems composed of granular silica gel-filled polycarbonate, reinforced polyester and double-glazed VIPs.

a) Nanogel-filled cellular polycarbonate panels are the most widespread system on the market.
Strengths: It is a very lightweight material. It has a high light transmission index. It is a low-cost material for immediate use.
Weaknesses: Durability is low (only 10 years). These panels are very lightweight but very fragile to impact.

b) No more than two types of reinforced polyester panels are commercialized despite the potential of this material.
Strengths: Good mechanical properties. Good malleability: they could be shaped according to design needs but no existing system offers this option. Durability is good.
Weaknesses: Existing systems have design faults, as they include internal aluminum carpentry or substructures, whereas there is, thanks to the characteristics of reinforced polyester, potential for manufacturing a self-supporting panel (as in the case of single-hull pleasure boats).

c) Double-glazed VIPs are still at the prototype stage.
Strengths: Thanks to the combination of vacuum and aerogel insulation, they provide the thinnest and best translucent insulation system in the building world (0.5W/m_K). Additionally, the service life of the glazing and the aerogel is very similar.
Weaknesses: This component is fragile. The high cost of molding glass into complex geometries rules out its use as a free-form system. It is a system that depends on substructures and other components for use.

Findings: After a comparative analysis of over one hundred and forty seven commercial products, and the detailed evaluation of the best eight (Figure 1), we can confirm that fiber reinforced polyester resin panels have some unexploited design lines such as the design of insulation for variable geometry translucent skins, or structural improvement for use as a self-supporting component.
Looking at double-glazed VIPs, the data indicate that, panels like these are the best commercial solution, as they offer the best thermal and acoustical insulation performance and optimal light transmission.
At the acoustical and thermal level, the VIP is the best of the envelopes examined.

2.2 Transparent systems
All panels implemented with monolithic aerogel instead of nanogel are transparent. They have a high solar transmittance and low U-value. At present all these systems are non-commercial prototypes. Noteworthy are two aerogel-insulated double-glazed VIPs:

a) 4-13.5-4/21.5mm double-glazed vacuum panels filled with monolithic aerogel with a pressure of 1hPa in the aerogel chamber. The heat transfer coefficient has a U-value of 0.7W/m_K for 14mm and 0.5W/m_K for 20mm. This almost doubles the insulation performance of the best commercial translucent panel.
Light transmission depends on the angle of incidence, but varies from 64.7% to 87.5%. The sound attenuation index is 33dB for a panel thickness of 23mm and noise reduction is expected to be Improved to 37dB. There is a 10 to 20% energy saving compared with a dwelling that is glazed with gas-insulated triple glazing (argon and krypton).

b) 10mm double-glazed VIPs with aerogel spacers inside the core. The heat transfer coefficient for 10mm panels has a U-value of 0.5W/m_K. This is the best of all the panels studied so far, where light transmission is equal to glass.

Findings: From the analysis of the transparent panels, VIPs are the closest to what we are looking for in this research. The only arguments against VIPs are the high cost of molding glass into complex geometries, and that they use fragile double-glazing as a sandwich protection panel (Figure 1).
Figure 1 Comparison of commercial systems and prototypes

3. Experimental study
Following up the results of the theoretical study outlined in Section 2, we now compare these findings with the results of an empirical experiment and computer simulations of the real commercial panels to which we had access.

3.1 Computer simulation
We used the Design Builder program to conduct a trial by computer simulation under the same environmental conditions as the empirical trials run on the other panels. Figure 2 describes the behavior of a 25mm aerogel sheet. We find that the test space has a uniform inside temperature of between 18 and 37°C.

3.2 Empirical trials
The trials are designed to examine the energy performance of the material. These trials are based on the determination of thermal transmittance by the hot box method [26]. They were run on boxes with an inner volume of 60x60x60cm, insulated with 20cm of expanded polyurethane. One of the box faces was left open by way of a window. The study elements are placed in this opening using a specially insulated frame. The trial involves exposing two such boxes to a real outside environment to study their behavior. The two boxes have two different windows: one is fitted with 6+8+6 double glazing with known properties as a contrast element and the other is fitted with the panel that we want to study. Data-loggers are placed inside each box for monitoring purposes. There is a thermal sensor on the outside to capture the...
temperature to which boxes are exposed. The boxes are set in a south-facing position as this is the sunniest exposure (Figure 3).

Figure 3 Energy performance testing system

We ran twenty-eight temperature-measuring trials using this system, and compared the performance of different thicknesses of commercial panels with 6+8+6 double glazing. Four of these panels deserve a special mention:

a) Trial-1: 16mm nanogel-filled Cabot Lexan Thermoclear polycarbonate sheets.
Results: There is on average a 2.5°C improvement in thermal properties over the double glazing at night, and it insulates almost 6°C more than double glazing exposed to direct solar radiation (Figure 4).

b) Trial-2: 25mm nanogel-filled Cabot Lexan Thermoclear (triple-wall) polycarbonate sheets.
Results: There is on average a 2 to 3°C improvement in thermal properties over the double glazing at night, and it insulates 15 to 20°C more than double glazing exposed to direct solar radiation (Figure 5).
c) Trial-3: Bayer Makrolon-Ambient S2S-25 sheet 25mm nanogel-filled twin-wall polycarbonate panel. Results: Behavior is very uniform. We get a 3°C improvement in thermal properties over the double glazing at night, and it insulates 5°C more than double glazing exposed to direct solar radiation (Figure 6).

![COMPARISON OF 6+8+6 DOUBLE GLAZING WITH 25 mm Makrolon Panel](image)

Figure 6 Trial 3

d) Trial-4: 70 mm Okagel Okalux VIP Panel: nanogel-filled vacuum insulation panel. Results: Temperature is homogeneous ranging between 17 to 32°C, and there is an almost constant difference of from 3 to 10°C compared with double glazing (Figure 7).

![COMPARISON OF 6+8+6 DOUBLE GLAZING WITH 70 mm Okalux Panel](image)

Figure 7 Trial 4

These four trials were evaluated and compared with the computer-simulated aerogel data (Figure 8) and data from the theoretical study. We found that, like the data output by the theoretical study, the real trials suggest that, on behavior, the materials are suitable for designing the new envelope system. The very flat loss curves in the plot describe a very low U-value. In terms of capture, there is a thermal difference of almost 30°C between the VIP panel and the worst of the tested panels. The difference between the VIP and the best-performing panel is almost 10°C in terms of loss and capture. We have confirmed the experimental datum that likens the behavior of the VIP panel to that of the computer-simulated aerogel.
COMPARISON OF THE TRIALS RUN ON COMMERCIAL PANELS AT EQUAL OUTSIDE TEMPERATURE

Equal outside temperature time zone

Outside temperature
Temperature with 25 mm monolithic Aerogel
Temperature with 70 mm Okalux panel
Temperature with 25 mm Cabot panel
Temperature with 25 mm Makrolon panel

Figure 8 Comparison of empirical data

From our computer-simulated experimental study, the data on organic aerogels supplied by the CSIC and the University of Barcelona, and the data from studies at the University of Denmark on envelopes implemented with monolithic silica gels and the empirical trials conducted in this research, we arrive at the following conclusions:

1. The best-performing insulation system is the VIP system implemented with monolithic aerogel.
2. Thanks to its mechanical properties and because it can be used to fabricate variable geometry translucent skins, the natural cellulose fiber-reinforced epoxy resin matrix, whose performance is similar to E-type glass fiber, is the best envelope for the F2TE3.
3. These are key data that are useful for designing a new lightweight, slim, high energy efficient, light-transmitting envelope system, providing for seamless, free-form designs.
4. Proposal for a Free-Form, Transparent, Energy Efficient Envelope System (F2TE3)

We propose a free-form design envelope system fabricated with cellulose fibers and polyester resin (or acrylic-based organic resin), and a vacuum core insulated with monolithic aerogel at a pressure of 100-50 hPa. Being a self-supporting component, the system can perform structural functions, and seams between panels are concealed by an outer coating applied in situ (Figure 9).

Figure 9 F2TE3 Envelope Profile Design
Materials:

(a) An outer skin of natural cellulose fiber-reinforced epoxy resin matrix with similar performance to E-type glass fiber, coated with an outer layer of gelcoat to protect it from external agents. The panel’s resistance, protection and variable geometry depends on this component.

(b) A thermal/acoustical insulation component composed of a monolithic silica gel-filled vacuum chamber.

Dimensions:

We have to take into account the sol-gel process drying times required for the monolithic silica gel to generate a crystalline structure, the percentage of breakages due to size and, above all, the fact existing autoclaves are able to generate monolithic gel pieces no larger than 55x55cm. The panel sizes will be 60x60cm (length/width), and panel thickness will depend on the use. We have studied a 25mm thick panel, composed of two sheets of 3mm-thick reinforced resin and a vacuum core filled with monolithic silica gel (Figure 10).

Figure 10 F^2TE^3 system axonometry

The weight will range from 15 to 7kg/m2, and the minimum admissible flexion radius will be approx. 4000mm.

Specifications:

- Light transmittance, D_{65}: from 59% to 85% approx.
- UV absorption: approx. 20%
- Total energy: approx. 61%
- Horizontal and vertical U-value: 0.50W/m2 K
- Thermal conductivity coefficient: 0.065mm/m °C, estimated
- Possible heat-and humidity-induced dilation: 3mm/m approx.
- Maximum temperature: should withstand temperatures of from 120°C to 250°C
- Weighted sound reduction value: estimated at 26-45dB
- Impact resistance: should be within the EN 356-PSA limit
- Fire resistance: European (EN13501) resistance regulations compliant
Testing:
A F2TE3 system with a thickness of 25mm has been computer simulated to examine its energy-saving behavior compared with a computer-simulated aerogel envelope of the same thickness (Figure 11).

![Comparison of F2TE3 System with 25 mm Computer simulation](image)

Figure 11 F2TE3 compared with monolithic aerogel

The F2TE3 system returns a result very close to what would be achieved with monolithic aerogel. F2TE3 performance almost equals aerogel in terms of heat loss, with a very similar flat curve (a difference of only 5°C), where the U-value is very small.

5. Conclusions
F2TE3 is a slim façade system that provides high energy efficiency, with a seamless surface, providing for variable geometry and the option of building self-supporting structures into the same transparent system skin.

Computer-simulated trials have shown it to have almost identical energy efficiency properties to monolithic aerogel systems and VIP envelopes. This system revolutionizes VIP systems, as it generates a transparent envelope but eliminates breakages due to fragility by substituting glass for a reinforced composite material. Additionally, it offers the option of generating variable geometry designs.

The prototype F2TE3 system outperforms the systems existing on the market by combining some of the best properties of these systems and overcoming their weaknesses.

6. References
[9] Hutt D. (2004), Walt Disney Concert Hall, Los Angeles, California, USA 2003; Architects: Frank Gehry of

