The effect of square corners on the ignition of solids

Vázquez Espí, Carlos y Liñán Martínez, Amable (1993). The effect of square corners on the ignition of solids. "Siam Journal on Applied Mathematics", v. 53 (n. 6); pp. 1567-1590. ISSN 0036-1399.


Título: The effect of square corners on the ignition of solids
  • Vázquez Espí, Carlos
  • Liñán Martínez, Amable
Tipo de Documento: Artículo
Título de Revista/Publicación: Siam Journal on Applied Mathematics
Fecha: 1993
Volumen: 53
Palabras Clave Informales: Combustion; Solid fuel; Ignition; Square configuration; Modeling; Activation energy; Asymptotic behavior; Combustible solide; Allumage; Configuration carree; Modelisation; Energie activation; Comportement asymptotique; Combustible solido; Encendido; Configuracion cuadrada; Modelizacion; Energia activacion; Comportamiento asintotico; Thermal use of fuels; Energy; Applied sciences; Utilisation thermique des combustibles; Energie; Sciences appliquees; Utilizacion termica de los combustibles; Energia; Ciencias aplicadas
Escuela: E.T.S.I. Aeronáuticos (UPM) [antigua denominación]
Departamento: Fundamentos Matemáticos de la Tecnología Aeronáutica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (521kB) | Vista Previa


the influence of square corners on the ignition of a solid exposed to a step in surface temperature is analyzed by means of large activation energy asymptotics. This study begins by considering the case of a semi-infinite square corner, applicable to the ignition of finite bodies with square corners when the reaction is very fast. Two spatial zones (reactive and inert) and two time stages (initial and transition) are identified. During the initial stage, the structure of the reaction zone is determined by a quasi-stationary problem of the Frank-Kamenetskii type, where the time variable plays the role of the Damköhler number. There is no solution to this problem if the time $\tau $ is larger than a certain critical value $\tau_0 $, which is a first approximation for the ignition time. In a transition stage, for $0 < \tau_0 - \tau \ll 1$, the nonstationary effects cannot be neglected; when these are taken into account, a first correction to the ignition time is obtained. The ignition of a two-dimensional rectangular solid is also described, for which the previous analysis is partially applicable if the Damköhler number $D_a$ is large enough. For $D_a$ of order unity, an asymptotic analysis is given, in which the process is described in terms of a first inert heating stage and a second reacting stage ending in a thermal runaway. A numerical description is given for the second stage to determine the ignition time in terms of the Damköhler number.

Más información

ID de Registro: 799
Identificador DC:
Identificador OAI:
URL Oficial:
Depositado por: Archivo Digital UPM
Depositado el: 27 Dic 2007
Ultima Modificación: 20 Abr 2016 06:32
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM