Flow Percolation in non homogeneous Hele-Shaw flows

Gonzalez Nieto, Pilar; Redondo, José Manuel; Hernandez, David y Tarquis Alfonso, Ana Maria (2010). Flow Percolation in non homogeneous Hele-Shaw flows. En: "European Geosciences Union General Assembly 2010", 02/05/2010 - 07/05/2010, Viena, Austria.


Título: Flow Percolation in non homogeneous Hele-Shaw flows
  • Gonzalez Nieto, Pilar
  • Redondo, José Manuel
  • Hernandez, David
  • Tarquis Alfonso, Ana Maria
Tipo de Documento: Ponencia en Congreso o Jornada (Póster)
Título del Evento: European Geosciences Union General Assembly 2010
Fechas del Evento: 02/05/2010 - 07/05/2010
Lugar del Evento: Viena, Austria
Título del Libro: Geophysical Research Abstracts
Fecha: 2010
Volumen: 12
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Matemática Aplicada a la Ingeniería Agronómica [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (38kB) | Vista Previa


The wetting front zone where water invades and advances into an initially dry porous material plays a crucial role in solute transport through many environmental flows, such as the unsaturated zone. The leaching of chemicals by wetting fronts seems influenced by two major factors, namely: the irregularity of the fronts and the heterogeneity in the distribution of chemicals, both of which have been described using fractal techniques. This works presents an experimental and theoretical framework for studying the physical interplay between a stationary wetting front of fractal dimension D with different porous materials. Simple wetting experiments are easy to compare with theoretical studies defining the physical interations between a stationary wetting front of maximum fractal dimension D and a multifractal distribution of chemicals around it with a singularity spectrum f( ). If D1 is the entropy dimension of the distribution and 0 is the point where f() attains its maximum value, then, as revealed by mathematical analysis, the fractal curve must have a fractal dimension D equal to or greater than the entropy dimension D1 of the distribution for a positive amount of mass to be accommodated inside it. Also, 0 D constitutes a scaling exponent for the likely mass inside an " -covering of the curve reflecting the potential for leaching on the sole basis of the physical interplay between the wetting front and the surrounding chemical molecules. Different shapes of the multifractal D(c) curves are compared

Más información

ID de Registro: 8090
Identificador DC: http://oa.upm.es/8090/
Identificador OAI: oai:oa.upm.es:8090
Depositado por: Memoria Investigacion
Depositado el: 03 Ene 2012 12:09
Ultima Modificación: 20 Abr 2016 17:00
  • GEO_UP4
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • InvestigaM
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM