Self-Adaptive Grids for Noise Mapping

Asensio Rivera, César; Recuero López, Manuel; Ruiz González, Mariano; Ausejo Prieto, Miguel y Pavón García, Ignacio (2010). Self-Adaptive Grids for Noise Mapping. En: "International Conference on Noise and Vibration Engineering, ISMA 2010", 20/09/2010 - 22/09/2010, Leuven, Bélgica.

Descripción

Título: Self-Adaptive Grids for Noise Mapping
Autor/es:
  • Asensio Rivera, César
  • Recuero López, Manuel
  • Ruiz González, Mariano
  • Ausejo Prieto, Miguel
  • Pavón García, Ignacio
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: International Conference on Noise and Vibration Engineering, ISMA 2010
Fechas del Evento: 20/09/2010 - 22/09/2010
Lugar del Evento: Leuven, Bélgica
Título del Libro: Proceedings of the International Conference on Noise and Vibration Engineering, ISMA 2010
Fecha: 2010
Materias:
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Ingeniería Mecánica y de Fabricación [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (645kB) | Vista Previa

Resumen

Often, the quality of the results in a noise map is expressed as a comparison between measured and calculated noise levels at several sample locations spread over the map. Although, under some circumstances this could be considered as a valid approximation, it excludes from the noise mapping process two very important stages: interpolation and classification. The two tasks must be applied to obtain a full map, with contours and isolines that allow characterizing the noise levels at every location in it.The grid of receivers used for calculations has an influence in the final results. We could summarize that, the thinner the grid (more receivers), the better the results. As the receivers’ density increases, the accuracy of the map is improved, but the computational costs will also increase exponentially. Furthermore, most of the receivers do not contribute to the optimization of the map quality.The main objective of this paper is to present a method that substantially improves the quality of a map at its isolines by using self-adaptive grids.Self-adaptive grids are created using a smart iterative algorithm that analyses previous knowledge to concentrate the calculation effort in those areas where it will be more effective. Because of this, it can provide better results than higher resolutions grids, while using fewer receivers for calculation and interpolation.Self-adaptive grids improve the results obtained by any starting grid, no matter the resolution of the grid, the interpolation method (idw, spline, kriging,..), the number of receivers, or the way they have been located (random, triangulated or equal spaced). As further knowledge (extra receivers) is provided as in input to the interpolator, the results will be improved.Self-adaptive grids have been proven to be an excellent method especially for open spaces with few obstacles. The use of a coarse initial grids, allow the number of calculated receivers to be reduced enormously, while improving the accuracy of the map. The calculation time is drastically reduced, as the number of calculation receivers is reduced. Because of this reason, this method may be very useful for grid refinement in models that do not consider obstacles in propagation paths (for instance, Integrated Noise Mapping, INM, for airports noise mapping)

Más información

ID de Registro: 8179
Identificador DC: http://oa.upm.es/8179/
Identificador OAI: oai:oa.upm.es:8179
URL Oficial: http://www.isma-isaac.be/past/conf/isma2010/
Depositado por: Memoria Investigacion
Depositado el: 05 Ago 2011 11:50
Ultima Modificación: 20 Abr 2016 17:04
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM