Detection system of magnetic nanoparticles in biological tissues by Magnetoencephalography

Javorsky, A. and Sanz Lluch, M. del Mar and Maestú, Fernando and Gaztelu, J. M. and Maicas Ramos, Marco Cesar and García-Pacios, J. and Romero-Vives, M. and Barios, J.A. and Pozo Guerrero, Francisco del and Aroca Hernández-Ros, Claudio (2010). Detection system of magnetic nanoparticles in biological tissues by Magnetoencephalography. In: "Magnetic Measurements 2010", 12/09/2010 - 15/09/2010, Praga, República Checa.

Description

Title: Detection system of magnetic nanoparticles in biological tissues by Magnetoencephalography
Author/s:
  • Javorsky, A.
  • Sanz Lluch, M. del Mar
  • Maestú, Fernando
  • Gaztelu, J. M.
  • Maicas Ramos, Marco Cesar
  • García-Pacios, J.
  • Romero-Vives, M.
  • Barios, J.A.
  • Pozo Guerrero, Francisco del
  • Aroca Hernández-Ros, Claudio
Item Type: Presentation at Congress or Conference (Poster)
Event Title: Magnetic Measurements 2010
Event Dates: 12/09/2010 - 15/09/2010
Event Location: Praga, República Checa
Title of Book: Proceedings of the Magnetic Measurements 2010
Date: 2010
Subjects:
Faculty: E.T.S.I. Telecomunicación (UPM)
Department: Física Aplicada a las Tecnologías de la Información [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[img]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

Magnetic nanoparticles are useful for a wide range of applications from data storage to medical imaging. Their unique features (controllable size in the nanoscale range, possibility to be coated with biological molecules, response to the application of a magnetic field...) make the development of a variety of medical applications possible, both for diagnosis and therapy [1-3]. On the other hand, Magnetoencephalography (MEG) is a non-invasive functional imaging technique that enables the description of the temporal and spatial patterns of brain activity in resting conditions or related to different basic cognitive processes, by detecting the weak magnetic fields generated by currents in the neurons [4,5]. The detection of the weak magnetic fields depends on gradiometer detection coils coupled to a superconducting quantum interference device (SQUID). However, MEG systems are not currently being used for the detection of MNPs in biological tissues. A system to newly detect Magnetic Nanoparticles (MNPs) in the brain and in biological tissues will be described. The method uses a commercial Magnetoencephalograph (MEG) and opens new possibilities to extend the use of MEG systems to new applications for both diagnosis and therapy of medical diseases, different from its common use in neurological diagnosis. To test the validity of the system, in this work, we will show its ability to detect MNPs in biological tissues and their possible use in diagnosis of cerebral brain microinjuries

More information

Item ID: 8297
DC Identifier: http://oa.upm.es/8297/
OAI Identifier: oai:oa.upm.es:8297
Official URL: http://amca.cz/mm2010/
Deposited by: Memoria Investigacion
Deposited on: 26 Jul 2011 10:56
Last Modified: 20 Apr 2016 17:08
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM