A model to predict the behaviour at part load operation of once-through heat recovery steam generators working with water at supercritical pressure

Antonio Roviraa,*, Manuel Valdésb, Ma Dolores Duránc

aE.T.S. Ingenieros Industriales de la UNED, Departamento de Ingeniería Energética, c/Juan del Rosal n° 12. 28040 Madrid, Spain
bE.T.S. Ingenieros Industriales de la U.P.M., Departamento de Ingeniería Energética y Fluidomecánica, c/José Gutiérrez Abascal n° 2. 28006 Madrid, Spain
cFacultad de Ingeniería de la UAEM, División de Ingeniería Mecánica, Cerro de Coatepec, C.U. 50110 Toluca, Mexico

ARTICLE INFO

Keywords:
Supercritical water
Heat recovery steam generator (HRSG)
Once-through boiler
Combined cycle gas turbine (CCGT)
exergetic losses

ABSTRACT

This paper describes a one-dimensional mathematical model that allows simulating the heat exchange in a steam generator working with water at supercritical pressure. The model has been developed in order to simulate the full and part load behaviour of heat recovery steam generators (HRSGs) of combined cycle gas turbine (CCGT) power plants. It takes into account the strong variation of some of the thermal and transport properties of fluids at supercritical pressure and discusses what parameters may be considered as constant along the heat exchanger.

On the one hand, the model is useful because going supercritical is considered a way to further improve the efficiency of CCGT power plants and, on the other hand, because part load operation is the most usual operation mode in power plants.

1. Introduction

Combined cycle gas turbines (CCGTs) power plants are one of the most efficient energy conversion systems. Owing to the good thermodynamic, economical and environmental performances that this kind of power plants may reach, nowadays they are undergoing widespread installation and the research in this field has notably increased.

A possible way to further improve the efficiency of these systems is to minimise the energetic losses in the heat recovery steam generator (HRSG) by means of the use of water at supercritical pressure. The difference of temperatures in the heat exchange from a hot fluid to a cold one leads to energetic losses. The energetic losses imply a diminution of the steam turbine power and, consequently, a decrease in the CCGT efficiency [1,2]. The main advantage of working at supercritical pressure is that there is not a saturation temperature, unlike at subcritical pressure. Instead, the plain zone in the enthalpy-temperature diagram does not exist any more and any heat input towards the working fluid will increase its temperature, so the mentioned energetic losses owing to the heat exchange decrease. This effect is observed in Fig. 1: Fig. 1a shows the typical energy-temperature diagram of a subcritical triple pressure HRSG (with three drums at different pressures) while Fig. 1b shows a triple pressure HRSG with a supercritical high pressure level. Such behaviour could remain at part load operation if the exhaust temperature of the gas turbine is controlled (for example, using compressors with variable inlet guide vanes) as the drop of temperature and pressure of the steam is lower than using other regulation systems [3,4]. Other advantages are the simplicity of the HRSG — once-through HRSGs can be employed — which should lead to cheaper designs [5,6] and faster start-up times [7].

Owing to these reasons and to the advances in experimental research — for example, Dechamps and Galopin [8] and Dumont and Rejen [9] —, working with water at supercritical pressure is near to be technically and economically feasible in CCGT power plants (Najjar [5], Dechamps [10] and Galopin [11]) as well as in coal fired power plants (Böhr [12]).

The simulation of the heat exchange in the HRSG when the power plant operates at part load conditions is interesting in order to predict the power plant performances when the demanded power is lower than the reached at full load operation or when the ambient conditions change. Part load calculations are usually much more time-consuming than the design condition (full load operation) ones. For example, the calculation time of a subcritical CCGT from full load until a load of 50% may be over one thousand times greater than that spent in calculating the design condition. Due to the nature of the water at supercritical pressure, which is introduced in Section 2, the time of calculation of a HRSG working with water at supercritical pressure would become even larger. Since this point of view, a complete three-dimensional model that

* Corresponding author. Tel.: +34 913988224; fax: +34 913987615.
E-mail addresses: rovira@ind.uned.es (A. Rovira), manuel.valdes@upm.es (M. Valdés), mduran@fi.uaemex.mx (Ma Dolores Durán).
2. Heat transfer to water at supercritical pressure

The behaviour of fluids at supercritical pressure is mainly characterised by a strong variation of their thermal and transport properties\(^1\) with the temperature. This behaviour makes impossible to assume that the properties are constant in the mathematical models, unlike what is usual in the subcritical mathematical models. For that reason, numerical methods are required instead of the usual symbolic solutions.

Furthermore, the strong variation of the fluid properties near the pseudocritical condition\(^2\) causes the phenomena called 'heat-transfer enhancement' and 'heat-transfer deterioration', whose influence on the HRSG heat transfer has to be considered.

The expressions that describe the heat exchange of the different HRSG heat exchangers (economisers, evaporators and superheaters) are shown in the following sections. The well known subcritical models will be adapted to simulate the heat exchange towards water at supercritical pressure in the cases of full load operation and part load operation of the power plant.

1. Heat exchange equations in HRSG

Two equations are needed to predict the behaviour of heat exchangers working with fluids at subcritical pressure: the energy balance and a heat exchange equation. When the HRSG of a CCGT power plant is analysed at the design condition, the energy balance (together with the knowledge of a given number of design parameters) provides the value of the design temperatures in every point of the HRSG (Valdés et al. [13] and [15]). If a counter-flow exchanger is used, the heat exchange equation allows calculating the UA product (product of the overall heat-transfer coefficient U and the exchange surface A) by means of the logarithmic mean temperature difference of the exchanger\(^3\):

$$
\dot{Q} = UA \frac{(T_g \text{ in} - T_w \text{ out}) - (T_g \text{ out} - T_w \text{ in})}{\ln \left(\frac{T_g \text{ in} - T_w \text{ out}}{T_g \text{ out} - T_w \text{ in}} \right)} \tag{1}
$$

The UA product is the base to predict later the performance of the heat exchanger at part load operation.

The expressions of the mathematical model that describe the heat exchanger working with a fluid at supercritical pressure are similar to the subcritical case. Nevertheless, they should take into account that most of the properties, for example the specific heat, cannot be assumed as constant — with the exception of the overall heat-transfer coefficient (U) in a first approach, as it will be explained in Section 2.2. In such a case, equation (1) is not valid any more. To avoid this problem, when a flow works at supercritical pressure the following methodology could be used:

2.1. Full load operation

The equations that govern the heat exchange (Fig. 2), again in the case of a counter-flow heat exchanger\(^3\), applied to the design point are:

$$
\begin{align*}
\frac{d\dot{Q}}{dT_g} &= -m_{g\text{ des}} \cdot c_{p g} \cdot \frac{dT_g}{dT} \\
\frac{d\dot{Q}}{dT_w} &= -m_{w\text{ des}} \cdot c_{p w} \cdot \frac{dT_w}{dT} \\
\frac{d\dot{Q}}{dx} &= U_{des} \cdot \frac{dA}{dx} \cdot (T_g - T_w) = (UA)_{des} \cdot (T_g - T_w) \cdot dx
\end{align*} \tag{2}
$$

where x varies between 0 and 1 and represents a dimensionless length of the exchanger.

Combining the first and the second equations, the following energy balance is obtained:

$$
\int_{T_g \text{ in des}}^{T_g \text{ out des}} m_{g\text{ des}} \cdot c_{p g} \cdot dT_g = \int_{T_w \text{ out des}}^{T_w \text{ in des}} m_{w\text{ des}} \cdot c_{p w} \cdot dT_w \tag{3}
$$

$$
T_g = T_g \text{ in des} + \int_{T_{w \text{ out des}}}^{T_w \text{ in des}} \frac{m_{w\text{ des}} \cdot c_{p w}}{m_{g\text{ des}} \cdot c_{p g}} \cdot dT_w \tag{4}
$$

On the other hand, combining the last two equations of (2):

$$
\frac{dx}{U_{\text{des}} \cdot (T_g - T_w)} \cdot dT_w \tag{5}
$$

Equation (5) may be integrated assuming U as constant along the exchanger (see Section 2.2):
Thermal energy transfer

Fig. 1. Thermal energy—temperature diagram of a subcritical HRSG (a) and a supercritical HRSG (b).

\[\dot{m}_{w \text{ des}} \cdot \int_{T_{w \text{ in}}}^{T_{w \text{ out}}} \frac{C_{Pw}}{(T_g - T_w)} \, dT_w \]

\[\frac{1}{U_{A\text{des}}} = \dot{m}_{w \text{ des}} \cdot \int_{T_{w \text{ in}}}^{T_{w \text{ out}}} \frac{C_{Pw}}{(T_g - T_w)} \, dT_w \]

For heat exchangers different from counter-flow ones, the equation (7) should be corrected with a factor \(F \) which is less than 1:

\[\dot{F}_{\text{des}} \cdot U_{A\text{des}} = \dot{m}_{w \text{ des}} \cdot \int_{T_{w \text{ in}}}^{T_{w \text{ out}}} \frac{C_{Pw}}{(T_g - T_w)} \, dT_w \]

Equation (8) may be numerically integrated at the design point of the power plant taking into account equation (4) (to calculate the gas temperature) and the value of \(C_{Pw} \), which varies at each step of the numerical integration. Therefore the \(\dot{F}_{\text{des}} \cdot U_{A\text{des}} \) product is calculated.

Equations (4) and (8) are the energy balance and the heat exchange expressions respectively, and the \(F \cdot U_A \) product may be obtained.

2.2.2. Part load operation

Once the \(F \cdot U_A \) product is obtained at the design point, it may be calculated at any other part load of the CCGT as it will be shown in Section 2.2. The calculation of any two variables, for example \(T_g \text{ out} \) and \(T_w \text{ in} \), may be done assuming that the others, \(T_g \text{ in} \), \(T_w \text{ out} \), \(\dot{m}_w \) and \(\dot{m}_g \), are known and using the corresponding \(U_A \) product in the part load operation point:

\[d(T_g - T_w) = \left(\frac{1}{C_{pg} \cdot \dot{m}_g} - \frac{1}{C_{Pw} \cdot \dot{m}_w} \right) \cdot dQ = \dot{F} \cdot dQ \]

\[d(T_g - T_w) = r \cdot \dot{m}_w \cdot C_{Pw} \cdot dT_w \]

where expressions (9) and (10) derive from equation (2). Integrating equation (10):

\[\int_{(T_g - T_w)}^{(T_g - T_w)} d(T_g - T_w) = \dot{m}_w \cdot \int_{T_{w \text{ in}}}^{T_{w \text{ out}}} r \cdot C_{Pw} \cdot dT_w \]

The integral may be numerically solved decreasing \(T_w \) at each step of the process. Thus, the value of \((T_g - T_w) \) is known for each intermediate value of \(T_w \).

At the same time, considering equation (5) and using its respective \(U_A \) value and the correction factor \(F \):

\[x = \frac{\dot{m}_w}{F \cdot U_A} \cdot \int_{T_{w \text{ out}}}^{T_{w \text{ in}}} \frac{C_{Pw}}{(T_g - T_w)} \, dT_w \]

With equations (12) and (13) it is possible to calculate the value of \(x \) for each \(T_w \). The numerical integrations conclude when \(x = 1 \) and then, \(T_g \text{ out} \) and \(T_{w \text{ in}} \) are the values corresponding to this final step of the process.

Equations (12) and (13) are again the energy balance and heat-transfer equations.

2.2. Calculation of the overall heat-transfer coefficient of supercritical fluids at part load operation

In order to evaluate the expressions (12) and (13), the knowledge of the \(F \cdot U_A \) product at any part load operation is needed. To this end it is enough to find the \((F \cdot U_A)/(F_{\text{des}} \cdot U_{A\text{des}}) \) ratio since the previously calculated heat exchange surface \(A \) is constant.

As it is known, the overall heat transfer coefficient is defined as the resistance that exists in the heat exchange between two different fluids. In the particular case of a heat exchanger in which the fluids flow inside and outside a tube, \(U \) may be calculated [16]:

\[U = \frac{1}{h_g + \frac{r_g}{k} \ln(r_o/r_i) + \frac{r_o}{h_w}} \]

where \(r_g \) and \(r_i \) are, respectively, the outside and inside radius of the tube, \(k \) is its thermal conductivity and \(h_g \) and \(h_w \) are the gas and the water-side convective heat-transfer coefficients. Typical values for the terms in subcritical HRSGs of CCGT are shown in Table 1. In this
The thermal conductivity of the materials was extracted from ref. [16].

Table 1

| Table 1 Typical values of the terms of equation (13) in HRSGs. |
|-------------------|-------------------|
| h_w [W/(m² K)] | k_f, h_f [W/(m² K)] | n, $h_{a,w}$ [W/(m² K)] |
| Economizers | 50–100 | 2000–6000 | 2000–20000 |
| Evaporators | 50–100 | 5000–1000 | 2000–20000 |
| Superheaters | 50–100 | 2000–1000 | 1000–5000 |

* Usual geometrical data were obtained from ref. [17]. Heat exchanger designs and convective heat-transfer coefficients were calculated as explained in ref. [18]. Thermal conductivity of the materials was extracted from ref. [16].

It may be observed that, especially in economisers and evaporators, the term corresponding to the gas side (h_g) is much lower than the thermal conductivity and the water-side terms (k and h_w). Therefore, in economisers and evaporators expression (14) may be simplified:

$$U = \frac{1}{h_g} = h_g$$

(15)

In flows at subcritical pressure, the convective heat-transfer coefficients (h) are usually calculated by means of empirical dimensionless relations. For flows inside a tube, a commonly used expression is the Dittus–Boelter equation [19]:

$$Nu = \frac{0.023 \cdot Re^{0.8} \cdot Pr^{0.4}}{1}$$

(16)

where Nu is the Nusselt, Re the Reynolds (both based on the hydraulic diameter of the tube) and Pr the Prandtl number. All of them, at subcritical pressures, are evaluated at the mean bulk temperature.

At supercritical pressure, the heat-transfer coefficient may deviate from the Dittus–Boelter equation near the pseudocritical condition, as reported by Petuhkov [20]. This phenomenon is called heat-transfer enhancement or deterioration (as it increases or decreases the coefficient respectively) and it should be taken into account when integrating equation (5).

For flows outside of the tubes (gas side in the HRSG), the expression proposed by Shmith [25] and used in HRSG by Weir [26] may be used:

$$Nu = a \cdot Re^m \cdot Pr^n \cdot \phi^1-m$$

(17)

where ϕ is a parameter that depends on the geometry of the exchanger (it takes into account the number and size of the fins and the bank tube geometry). For a heat recovery boiler, a, m and n are respectively 0.3, 0.625 and 1/3 (Weir [26]). Nu and Re are based on the hydraulic diameter (four times the cross sectional area divided by the wetted perimeter) and Nu, Re and Pr are evaluated at the mean bulk temperature.

Once the convective heat-transfer coefficient has been calculated at the design condition, U could be obtained at every part load condition using the following equation:

$$U = \frac{1}{h_g} + \frac{1}{h_f} + \frac{1}{h_w} = \frac{1}{h_g} + \frac{1}{k_f} \cdot \ln \left(\frac{r_0}{r_f} \right) + \frac{1}{h_w} = \frac{1}{h_g} + \frac{1}{k_f} \cdot \ln \left(\frac{r_0}{r_f} \right) + \frac{1}{h_w} = \frac{1}{h_g} + \frac{1}{k_f} \cdot \ln \left(\frac{r_0}{r_f} \right) + \frac{1}{h_w}$$

(18)

The subscript des makes reference to the nominal or design condition. The relations $h_g h_{g,des}$ and $h_w h_{w,des}$ may be calculated as it is indicated in Section 2.3.

For economisers and evaporators expression (18) may be simplified as follows:

$$U = h_g = h_{g,des} \cdot \frac{h_g}{h_{g,des}}$$

(19)

and the $F \cdot UA$ product may be calculated:

$$F \cdot UA = F_{des \cdot UA_{des}} \cdot \frac{F \cdot U}{F_{des \cdot U_{des}}} = F_{des \cdot UA_{des}} \cdot \frac{F}{F_{des \cdot h_g}}$$

(20)

The coefficients $h_{g,des}$ and $h_{w,des}$ depend on the geometry of the heat exchanger. Thus, equations (18) and (19) have the disadvantage of requiring the knowledge of the geometric design of the exchanger. Equation (20) suggests that the heat exchange is mainly governed by the gas flow. For that reason U may be assumed as constant along the heat exchanger, which should be taken into account when integrating equation (5).

The influence of the $h_{g,des}$ ratio is assessed in Section 3 by means of a sensitivity analysis.

2.3. Calculation of the convexive heat-transfer coefficient of flows at part load operation

The convective heat-transfer coefficient (h) is a variable that depends on the temperature, the pressure, the velocity of the stream and the geometry of the exchanger. As it was said before, for a stream flowing through the outside of a finned tube the equation (17) may be used. Replacing the non-dimensional numbers by their definitions:

$$\left(\frac{h_g D_g}{h_g} \right) = a \cdot \left(\frac{\rho_g v_g D_g}{k_g} \right)^m \cdot \left(\frac{\mu_g}{k_g} \right)^n \cdot \phi^{1-m}$$

(21)

where D_g is the characteristic length of the flow. Solving for h_g:

$$h_g = \frac{a \cdot D_g^{m-1}}{A_m} \cdot \frac{\rho_g v_g D_g}{k_g} \cdot \frac{\mu_g}{k_g} \cdot \phi^{1-m}$$

Reorganising the terms and taking into account that $m_g = \rho_g v_g A_g$ (where A_g is the cross sectional surface):

$$h_g = a \cdot D_g^{m-1} \cdot \frac{\rho_g v_g A_g}{k_g} \cdot \frac{\mu_g}{k_g} \cdot \phi^{1-m}$$

(23)

Rapun [27] and Duran [28] expand and reorganise expression (23) as below in order to express the convective heat-transfer coefficient as a function of three terms. One of them is constant and only depends of the geometry (I), the second variable depends on the thermal state of the fluid (β) and the last one depends on the mass flow of the stream:

$$h_g = \left(\frac{0.3 \cdot D_g^{0.625 - 1}}{A_{0.625}^{0.625 - 1}} \right) \cdot \left(\frac{\beta}{p_g^{0.625 - 1/3} \cdot k_g^{0.625 - 1}} \right) \cdot m_g^{0.625}$$

(24)

where the a, m and n coefficient have been replaced by the values proposed in ref. [26].
Finally, the expression for \(h_g/\dot{h}_{g\text{des}} \) is obtained:

\[
\frac{h_g}{\dot{h}_{g\text{des}}} = \frac{\frac{\dot{V}_g}{\dot{V}_{g\text{des}}} \cdot \frac{m_g}{m_{g\text{des}}} \cdot \frac{0.625}{0.575}}{rac{k_g}{k_{g\text{des}}} \cdot \frac{c_{pg}}{c_{pg\text{des}}} \cdot \frac{0.625}{0.625} \cdot \frac{P_{r\text{des}}}{P_{rg}}} = \frac{0.625}{0.625} \cdot \frac{0.575}{0.575} \cdot \frac{0.625}{0.625} = 1
\]

(25)

The above expression depends on the thermodynamic state and the gas mass flow but not on the geometric design of the exchanger. Therefore, the disadvantage that arose in equation (18) disappears in equation (20).

3. Validation of the model

In order to validate the proposed model, data from an experimental HRSG [8] are used. The schematic of the HRSG is shown in Fig. 3 and its main geometric data are shown in Table 2. It has two heat exchangers: the first one (EvSC1) works as an economizer and an evaporator and the second one (EvSC2) works as a superheater. The gas flows outside the tubes of the heat exchangers.

In the cited work, the performance of the HRSG is provided in two different operating conditions. These conditions, shown in Table 3, differ in the mass flow of the gas, the inlet gas temperature \(T_{g1} \), the feed water temperature \(T_{w1} \), the steam temperature \(T_{s2} \) and the pressure are the same in both cases. They were the input data of the simulation, so the variables to be validated were the gas outlet temperature of each exchanger \(T_{g2} \) and \(T_{g3} \), the intermediate water temperature \(T_{w2} \), and the steam mass flow.

It has been assumed that condition 1 of Table 3 corresponds to the full load condition of the experimental HRSG. Hence, an HRSG similar to the experimental one was simulated and, afterwards, the results are compared to those obtained in the simulation. It can be observed that the results obtained using the proposed model for \(m_{w1} \), \(T_{g1} \), \(T_{w2} \) and \(T_{w3} \) fit well with the experimental values, and that the trends obtained predict accurately the actual HRSG performance. The value of \(F/UA \) product of the heat exchangers are also compared, both for the real and the simulated HRSG. They were obtained using equation (8). Differences are below 10% for both exchangers at the two conditions. It should be noted that the correction factor \(F \) may affect the results at condition 2 because their values may vary from the full load condition to the part load one.

In Table 3, the results have been obtained for a value of \(F/LM \) of 1 in equation (20). When the load of a CCGT decreases, the generation of steam in the HRSG also decreases. Therefore, at part load operation the HRSG is oversized and its efficiency slightly increases. For that reason, the heat transfer along the exchangers should vary and the ratio \(F/LM \) may differ from 1 [16]. Actually, the factor \(F \) takes a value between that corresponding to a cross-flow exchanger and 1, corresponding to a counter-flow exchanger. The greater the amount of bank of tubes is, the higher the value of \(F \) is, and its value is close to 1 for well-designed exchangers [29]. Since HRSG consists on several banks of tubes, \(F/LM \) should not vary at a large extent.

In order to quantify the uncertainty that this ratio introduce, sensitivity analysis was done. Table 4 shows how the steam production and the temperatures vary when the ratio \(F/LM \) is altered. The other parameters do not vary. Calculations were done only for condition 2 because condition 1 corresponds to the design point, and the results are shown as percentage changes. When \(F/LM \) is modified a 20% toward higher or lower values, variations of the results are below 4.5%. If \(F/LM \) is modified a 10%, the variations are even below 2%. Lower variations of \(F/LM \), expected in large HRSGs, lead to small uncertainties.

<table>
<thead>
<tr>
<th>Heat exchanger</th>
<th>Econo-evap</th>
<th>Superheater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube diameter (mm)</td>
<td>25</td>
<td>26.5</td>
</tr>
<tr>
<td>Tube thickness (mm)</td>
<td>2.9</td>
<td>4.2</td>
</tr>
<tr>
<td>Number of rows</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Useful length (m)</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Fin per meter (m⁻¹)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Fin diameter (mm)</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Tube layout</td>
<td>Staggered</td>
<td>Staggered</td>
</tr>
<tr>
<td>Transverse pitch (mm)</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>Longitudinal pitch (mm)</td>
<td>73</td>
<td>73</td>
</tr>
</tbody>
</table>

Table 3

Experimental data and model estimation for the HRSG variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Condition 1</th>
<th>Condition 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Real</td>
<td>Simulation</td>
</tr>
<tr>
<td>(m_w) (kg/s)</td>
<td>22.2</td>
<td>22.1</td>
</tr>
<tr>
<td>(m_{w1}) (kg/s)</td>
<td>3.83</td>
<td>3.85</td>
</tr>
<tr>
<td>(T_{w1}) (K)</td>
<td>923</td>
<td>923</td>
</tr>
<tr>
<td>(T_g) (K)</td>
<td>822</td>
<td>823.7</td>
</tr>
<tr>
<td>(T_{w2}) (K)</td>
<td>493</td>
<td>488.2</td>
</tr>
<tr>
<td>(T_{w3}) (K)</td>
<td>793</td>
<td>793</td>
</tr>
<tr>
<td>(T_{s2}) (K)</td>
<td>665</td>
<td>607.1</td>
</tr>
<tr>
<td>(T_{s3}) (K)</td>
<td>378</td>
<td>378</td>
</tr>
<tr>
<td>(p) (bar)</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>(F/UA_{des}) (kW/K)</td>
<td>17.4</td>
<td>16.9</td>
</tr>
<tr>
<td>(F/UA_{est}) (kW/K)</td>
<td>1029</td>
<td>1102</td>
</tr>
</tbody>
</table>

Table 4

Sensitivity analysis of \(F/LM \).

<table>
<thead>
<tr>
<th>(F/LM)</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
<th>1.1</th>
<th>1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta m_w) (%)</td>
<td>-4.38</td>
<td>-1.87</td>
<td>0.00</td>
<td>1.70</td>
<td>3.30</td>
</tr>
<tr>
<td>(\Delta T_{w1}) (%)</td>
<td>2.37</td>
<td>0.87</td>
<td>0.00</td>
<td>-1.48</td>
<td>-2.91</td>
</tr>
<tr>
<td>(\Delta T_g) (%)</td>
<td>4.14</td>
<td>1.83</td>
<td>0.00</td>
<td>-1.72</td>
<td>-3.32</td>
</tr>
<tr>
<td>(\Delta T_{s2}) (%)</td>
<td>1.03</td>
<td>0.30</td>
<td>0.00</td>
<td>0.47</td>
<td>-0.80</td>
</tr>
</tbody>
</table>
4. Conclusions

A methodology to simulate the heat exchange process between a gas and a fluid at supercritical pressure has been proposed. It takes into account that the UA product cannot be calculated using the logarithmic mean temperature difference due to the strong variation of the thermal and transport properties of the fluid. Instead, the calculation is done using a numeric integration along the heat exchanger length. Furthermore, the model allows simulating heat exchangers at the design point and at off-design operation, which is useful in many engineering fields.

The model developed in this paper has been applied to once-through HRSGs and successfully validated with experimental data [8]. Furthermore, the sensitivity analysis done shows that the uncertainties in the heat exchange calculation will not lead to high inaccuracies, especially in large HRSGs.

Finally, the simulation method does not need a thorough knowledge of the geometric design of the heat exchanger. In that way, the number of input data required for the off-design simulation is remarkably small.

Acknowledgements

The authors wish to acknowledge the financial support of UNED to this work.

Appendix. Order of magnitude of the convective heat-transfer coefficient of water at supercritical pressure

In subcritical economisers and evaporators of HRSGs, the water-side convective heat-transfer coefficient may be considered as much higher than the gas-side ones. For that reason, in these subcritical exchangers expression (19) may be used (see Table 1).

This appendix shows, firstly by means of the Dittus—Boelter equation and later considering the heat-transfer deterioration, that the convective heat-transfer coefficient of supercritical liquid and vapour water (below and above of the pseudocritical point respectively) are similar to the subcritical liquid water when they flow through economisers and superheaters respectively. Consequently they are much higher than the gas-side ones.

Fig. 4 shows the convective heat-transfer coefficient of the liquid water versus the temperature taking the pressure (subcritical and supercritical) as a parameter. It was calculated by means of the Dittus—Boelter correlation applied to a tube of 30 mm of diameter and a velocity of 2.5 m/s (typical values in economisers of HRSGs). The results show that the coefficient is almost independent of the pressure far from the saturation line or the pseudocritical point and that the value increases with the pressure near the pseudocritical point. The heat-transfer coefficient at the water side is always more than two orders of magnitude higher than the gas side one.

On the other hand, Fig. 5 is similar to Fig. 4 but calculating the coefficient of the steam in a tube of 30 mm of diameter where the velocity is 25 m/s (typical in superheaters). In this case it can be observed that, at subcritical pressure (below of 221 bar), the value of the convective coefficient is in order of magnitude lower than the obtained before for the liquid water case (Fig. 4). However, it is also observed that the value reached at supercritical pressures is similar to the obtained for the liquid water.

Likewise, Fig. 6 shows the evolution of the convective heat-transfer coefficient of the experimental HRSG used by Dechamps and Galopin [8]. The similarity between both coefficients — at liquid and vapour state — is shown again. Similar results were obtained by Dumont and Heyen [9].

Finally, as it was said in Section 2.2, at supercritical pressure the Dittus—Boelter equation is not valid to predict accurately the value of the convective heat-transfer coefficient. In order to solve this problem several corrections has been given by many authors. Cheng and Schulenberg [30] made a literature review about the matter. In their work, they show a certain lack of agreement between the different authors and point out that the corrections to the Dittus—Boelter equation differ in each particular case. Analysing the results shown in ref. [30], which do not take into account the heat-transfer deterioration phenomenon, it may be concluded that the order of magnitude of the convective heat-transfer coefficient is the same than the obtained by means of the Dittus—Boelter equation. The effect of the heat-transfer deterioration...
could be analysed from ref. [31], where it could be observed that despite of this phenomenon, the order of magnitude of the convective heat-transfer coefficient still remains. In ref. [31] it is also discussed that the deteriorated heat transfer can be suppressed by means of flow obstructions and other heat-transfer enhancing devices. For these reasons equation (19) could be used since the gas-side heat-transfer coefficient for usual HRSG designs is much lower than the water one.

References