Fighting cheaters: how and how much to invest.

Sanz Nuño, Juan Carlos (2010). Fighting cheaters: how and how much to invest.. "European Journal of Applied Mathematics", v. 21 (n. 4-5); pp. 459-478. ISSN 0956-7925. https://doi.org/10.1017/S0956792510000094.

Descripción

Título: Fighting cheaters: how and how much to invest.
Autor/es:
  • Sanz Nuño, Juan Carlos
Tipo de Documento: Artículo
Título de Revista/Publicación: European Journal of Applied Mathematics
Fecha: Abril 2010
Volumen: 21
Materias:
Escuela: E.T.S.I. Montes (UPM) [antigua denominación]
Departamento: Matemática Aplicada a los Recursos Naturales [hasta 2014]
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (959kB) | Vista Previa

Resumen

Human societies are formed by different socio-economical classes which are characterized by their contribution to, and their share of, the common wealth available. Cheaters, defined as those individuals that do not contribute to the common wealth but benefit from it, have always existed, and are likely to be present in all societies in the foreseeable future. Their existence brings about serious problems since they act as sinks for the community wealth and deplete resources which are always limited and often scarce. To fight cheaters, a society can invest additional resources to pursue one or several aims. For instance, an improvement in social solidarity (e.g. by fostering education) may be sought. Alternatively, deterrence (e.g. by increasing police budget) may be enhanced. Then the following questions naturally arise: (i) how much to spend and (ii) how to allocate the expenditure between both strategies above. This paper addresses this general issue in a simplified setting, which however we believe of some interest. More precisely, we consider a society constituted by two productive classes and an unproductive one, the cheaters, and proposes a dynamical system that describes their evolution in time. We find it convenient to formulate our model as a three-dimensional ordinary differential equation (ODE) system whose variables are the cheater population, the total wealth and one of the productive social classes. The stationary values of the cheater population and the total wealth are studied in terms of the two parameters: φ (how much to invest) and s (how to distribute such expenditure). We show that it is not possible to simultaneously minimize the cheater population and maximize the total wealth with respect to φ and s. We then discuss the possibility of defining a compromise function to find suitable values of φ and s that optimize the response to cheating. In our opinion, this qualitative approach may be of some help to plan and implement social strategies against cheating.

Más información

ID de Registro: 8382
Identificador DC: http://oa.upm.es/8382/
Identificador OAI: oai:oa.upm.es:8382
Identificador DOI: 10.1017/S0956792510000094
URL Oficial: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=7853385
Depositado por: Memoria Investigacion
Depositado el: 26 Ago 2011 10:58
Ultima Modificación: 20 Abr 2016 17:11
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM