Associated Health Benefits on Mortality of Reducing Particulate Matter (PM2.5) in Spain

Boldo Ea,b, Linares Ca, Lumbreras Jc, Borge Rc, García-Pérez Ja,b, Fernández-Navarro Pa,b, Pérez-Gómez Ba,b, Aragonés Na,b, Pollan Ma,b, Ramis Ra,b, Teresa Morenod, López-Abente, Ga,b

a Cancer and Environmental Epidemiology Area, National Centre of Epidemiology, Carlos III Institute of Health, Madrid, Spain and b CIBER Epidemiología y Salud Pública (CIBERESP), Spain

c Department of Chemical & Environmental Engineering, Technical University of Madrid (UPM), Madrid, Spain.

d Institute of Environmental Assessment and Water Research, Barcelona, Spain

SERCA project is financed by the Spanish Ministry of the Environment and Rural and Marine Affairs (058/PC08/3-18.1).
Introduction: SERCA Project

- The study was carried out in the framework of the Air Pollution Risk Assessment System (SERCA)

- 3-year project (2009-2011)

- Spanish network of environmental and public-health professionals
 - Coordinator: Laboratory of Environmental Modelling. Technical University of Madrid (UPM)
 - Institute of Environmental Assement and Water Research (IDAEA-CSIC)
 - National Center for Epidemiology (ISCIII)
Introduction: background and objective

- **Background**
 Positive associations between exposure to air pollutants at low concentrations (particularly PM2.5) and adverse health outcomes

- **Objective**
 To estimate the number of avoidable deaths associated with reducing PM2.5 levels in Spain
HIA methodology

Mortality

CRF

BenMap software

Attributable cases

Control conditions

Baseline conditions

CMAQ software

PM2.5

Methodology: Air Quality Change

- Air quality model tool: **CMAQ** (Community Multiscale Air Quality)
- Free software to provide baseline and control conditions (US EPA)
Methodology: Air Quality Change

Air quality modeling data:

- **Baseline conditions**: a baseline 2004 scenario based on Spain's National Emissions Inventory

- **Control conditions**: a projected 2011 scenario in which a reduction in PM2.5 was estimated if specific air quality policies were implemented
Methodology: HIA tool

- **BenMAP** (Environmental Benefits Mapping and Analysis Program)
- Free software to estimate health benefits from improvements in air quality (US EPA)
Methodology: Air Quality Change
Gridded information with 18 Km2 spatial resolution

Input data for each grid cell:
1 baseline data + 1 control data

CMAQ software

BenMap software

Linking air quality modelling and human impact assessment through the BenMAP
Methodology: Health effects (mortality)

- Spanish National Statistics Institute (INE) provided population and mortality data for each town (8,109 municipal cores)

- 2004-2006 Crude all-cause mortality rates (ICD-10: A00-Y98) for the over-30 and 25-74 age groups

- 2004 population figures corresponding to these same age groups
Methodology: Mortality rate and population

Input data for each grid cell:

1 mortality rate data
+ 1 population data

BenMap software
Methodology: CRF

We used two CRFs linked to PM2.5 exposure (Laden et al., 2006; Pope et al., 2002)

<table>
<thead>
<tr>
<th>Author</th>
<th>Location</th>
<th>Study population (age groups)</th>
<th>Regression coefficient (β)</th>
<th>Study features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pope et al., 2002</td>
<td>51 US cities</td>
<td>500,000 (30-99 years)</td>
<td>5.8*10^-3</td>
<td>Mean estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Std. Error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.1*10^-3</td>
<td>β distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Laden et al., 2006</td>
<td>6 US cities</td>
<td>8,096 (25-74 years)</td>
<td>14.8*10^-3</td>
<td>Mean estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Std. Error</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.1*10^-3</td>
<td>β distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal</td>
<td></td>
</tr>
</tbody>
</table>

Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002; 287:1132-41

Results: Air Quality Change

Modeled PM2.5 change between baseline scenario (2004) and control scenario (2011)

Air quality improvement was defined as an average annual reduction of 0.7 mg/m^3 in PM2.5 levels
Results: assessing the health impacts
PM2.5: LONG-TERM HEALTH IMPACT ON ALL CAUSES MORTALITY IN SPAIN (SCENARIO 2004-2011)

HIA estimations according to Pope et al., 2002

Absolute number of annual avoidable deaths

Crude rates of avoidable deaths/ 100,000 population

Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002; 287:1132-41
PM2.5: LONG-TERM HEALTH IMPACT ON ALL CAUSES MORTALITY IN SPAIN (SCENARIO 2004-2011)

HIA estimations according to Laden et al., 2006

Absolute number of annual avoidable deaths

Crude rates of avoidable deaths/ 100,000 population

Results: assessing the health impacts

Summary of long-term HIA findings in terms of potential reductions in the number of attributable deaths and rates per 100,000 population

<table>
<thead>
<tr>
<th>Exposure indicator</th>
<th>Health indicator</th>
<th>Population at risk (age group)</th>
<th>CRF</th>
<th>Number of avoidable deaths (50th percentile)</th>
<th>Range of avoidable deaths (5th–95th percentiles)</th>
<th>Number of avoidable deaths per 100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term PM$_{2.5}$</td>
<td>All-cause mortality</td>
<td>27,327,894 (30-99 years)</td>
<td>Pope, 2002</td>
<td>1,718</td>
<td>673-2,760</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27,581,475 (25-74 years)</td>
<td>Laden, 2006</td>
<td>1,447</td>
<td>780-2,108</td>
<td>5</td>
</tr>
</tbody>
</table>

1,718 all-cause deaths (6 per 100,000 population) in the over-30 age group and 1,447 all-cause deaths (5 per 100,000 population) in the 25-74 age group could be prevented annually.
Discussion

- The validity of HIA estimates depends on:
 - Quality of population and health data
 - Quality of exposure data
 - Risk estimates

- Our overall results are consistent with previous HIA studies undertaken in Europe and Spain

- BenMAP could be a suitable tool for future HIA in Spain and in other European countries
Summary

- Potential benefits in mortality if pollution control policies were successfully implemented by 2011

- First attempt to perform a national HIA of air pollution in Spain
Associated Health Benefits on Mortality of Reducing Particulate Matter (PM2.5) in Spain (109)

Elena Boldo
Cancer and Environmental Epidemiology Unit, National Center for Epidemiology, Carlos III Institute of Health
Avda. Monforte de Lemos, 5, 28029 Madrid, Spain
Tel.: +34918222664
E-mail address: eiboldo@isciii.es

SERCA project is financed by the Spanish Ministry of the Environment and Rural and Marine Affairs (058/PC08/3-18.1).