Taxonomy of endosymbiotic bacteria from a novel *Lupinus* sp. (*Lupinus mariae-josephi*) endemic of a limed-alkaline soil habitat in Southeastern Spain.

Luis Rey Navarro\(^a\), Carmen Sánchez Cañizares\(^a\), David Durán\(^a\), Francisco Temprano\(^b\), Paloma Sánchez Jiménez\(^a\), Juan Imperial \(^{a,c}\) and Tomás Ruiz-Argüeso\(^a\)

\(^a\)Departamento de Biotecnología, Universidad Politécnica de Madrid. Avenida Complutense s/n, 28040 Madrid. and Centro de Biotecnología y Genómica de Plantas, UPM, Campus de Montegancedo - Carretera M40 km 38, 28223 Pozuelo de Alarcón (Madrid)

\(^b\)IFAPA Las Torres-Tomejil. Carretera de Sevilla Cazalla, Km 12.2 41200-Alcalá del Río (Sevilla).

\(^c\)CSIC

E-mail: luis.rey@upm.es

Lupinus mariae-josephi is a recently described *Lupinus* species (Pascual 2004) endemic of a Southeastern area of Spain with soils singularly of high pH and active lime content where it is endangered due to the reduced size of its habitat. Ten isolates of *L. mariae-josephi* endosymbiotic bacteria were obtained using trap-plants and soils from five sampling points within a native plant population area in Llombai (Valencia, Spain). The microsymbionts are extra-slow (ultrabradytrophic) growing bacteria with phenotypic and symbiotic characteristics singularly different from *Bradyrhizobium* strains nodulating other *Lupinus* spp. thriving in the Iberian Peninsula and adapted to growth in acidic soils. Cross-inoculation experiments revealed that these *L. mariae-josephi* endosymbiotic bacteria isolates are unable to nodulate or efficiently fix nitrogen with other *Lupinus* spp. Their phylogenetic status was examined by a multilocus sequence analysis of four housekeeping genes (*16S rDNA, glnII, recA, atpD*) and the symbiotic *nodC* gene. The 16S rDNA phylogenetic analysis showed that *L. mariae-josephi* isolates are related to strains nodulating *Retama* spp. in northeastern Algeria (Boulila et al., 2009), *Phaseolus lunatus* from Peru (Ormeño-Orrillo et al., 2006), as well as to *B. elkanii, B. jicamae* and *B. pachyrhizi* species, forming a new clade (Clade I) within the *Bradyrhizobium* genus. All the single and concatenated *glnII+recA* and *glnII+recA+atpD* analyses consistently support the existence of Clade I, and also revealed that, within this clade, the *L. mariae-josephi* endosymbiotic bacteria belong to a single evolutionary lineage that also includes strains nodulating *Retama* spp. from northeastern Algeria. Within this new *Bradyrhizobium* lineage, the phylogenetic analyses performed showed essentially convergent results indicating that the tested *L. mariae-josephi* isolates nested in three sub-groups that might correspond to novel sister *Bradyrhizobium* species. *Bradyrhizobium* Clade I is highly differentiated from the *Bradyrhizobium* clade (Clade II) that includes currently named *Bradyrhizobium* species and well-delineated unnamed genospecies. Singularly, all the endosymbiotic bacteria from *Lupinus* species adapted to acid soils in the Iberian Peninsula and
tested in this study are included in Clade II. They are related either to strains of the *B. canariense* or *B. japonicum* lineages. The phylogenetic analysis based on the symbiotic *nodC* gene showed that *L. mariae-josephi* endosymbiotic bacteria define a novel branch in the *nodC* *Bradyrhizobium* tree. This branch groups together with a branch that gathers isolates from recently studied legume symbioses such as isolates from *Retama* spp., which suggests the existence of a common unique ancestor for the symbiotic genes of these two groups of bradyrhizobia. In contrast, the symbiotic genes of isolates from other *Lupinus* spp. from the Iberian Peninsula are clearly related to the *B. canariense* lineage. The allopatric (geographic) speciation of the *L. mariae-josephi* bradyrhizobia may result from the colonization of a singular habitat, such as the basic and high calcium carbonate soils of the Valencia area, by its unique legume host.

References

F. Boulila, G. Depret, A. Boulila, D. Belhadi, S. Benallaoua, & G. Laguerre (2009) *Retama* species growing in different ecological-climate areas of northeastern Algeria have a narrow range of rhizobia that form a novel phylogenetic clade within the *Bradyrhizobium* genus. *Systematic and Applied Microbiology* 32: 245-255

This research was financed by Fundación del Banco de Bilbao Vizcaya Argentaria (FBBVA) 2009-2012