Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms

Vicen Bueno, Raul; Jarabo Amores, M. Pilar; Rosa Zurera, Manuel; Sanz Gonzalez, Jose Luis y Maldonado Bascon, Saturnino (2010). Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms. "Neural Processing Letters", v. 32 (n. 3); pp. 249-268. ISSN 1370-4621. https://doi.org/10.1007/s11063-010-9155-8.

Descripción

Título: Importance Sampling for Objetive Funtion Estimations in Neural Detector Traing Driven by Genetic Algorithms
Autor/es:
  • Vicen Bueno, Raul
  • Jarabo Amores, M. Pilar
  • Rosa Zurera, Manuel
  • Sanz Gonzalez, Jose Luis
  • Maldonado Bascon, Saturnino
Tipo de Documento: Artículo
Título de Revista/Publicación: Neural Processing Letters
Fecha: Diciembre 2010
Volumen: 32
Materias:
Palabras Clave Informales: Genetic algorithms - Neural networks - Monte Carlo - Importance sampling - Mean-Square error - Cross Entropy error - Misclassification error
Escuela: E.T.S.I. Telecomunicación (UPM)
Departamento: Señales, Sistemas y Radiocomunicaciones
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (889kB) | Vista Previa

Resumen

To train Neural Networks (NNs) in a supervised way, estimations of an objective function must be carried out. The value of this function decreases as the training progresses and so, the number of test observations necessary for an accurate estimation has to be increased. Consequently, the training computational cost is unaffordable for very low objective function value estimations, and the use of Importance Sampling (IS) techniques becomes convenient. The study of three different objective functions is considered, which implies the proposal of estimators of the objective function using IS techniques: the Mean-Square error, the Cross Entropy error and the Misclassification error criteria. The values of these functions are estimated by IS techniques, and the results are used to train NNs by the application of Genetic Algorithms. Results for a binary detection in Gaussian noise are provided. These results show the evolution of the parameters during the training and the performances of the proposed detectors in terms of error probability and Receiver Operating Characteristics curves. At the end of the study, the obtained results justify the convenience of using IS in the training.

Más información

ID de Registro: 9556
Identificador DC: http://oa.upm.es/9556/
Identificador OAI: oai:oa.upm.es:9556
Identificador DOI: 10.1007/s11063-010-9155-8
URL Oficial: http://www.springerlink.com/content/b2704072q0368q87/
Depositado por: Memoria Investigacion
Depositado el: 07 Nov 2011 08:59
Ultima Modificación: 20 Abr 2016 17:55
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM