Automatic Identification of Defects on Eggshell Through a Multispectral Vision System

Lunadei, Loredana; Ruiz García, Luis; Bodria, Luigi y Guidetti, Riccardo (2011). Automatic Identification of Defects on Eggshell Through a Multispectral Vision System. "Food and Bioprocess Technology" ; ISSN 1935-5130. https://doi.org/10.1007/s11947-011-0672-x.

Descripción

Título: Automatic Identification of Defects on Eggshell Through a Multispectral Vision System
Autor/es:
  • Lunadei, Loredana
  • Ruiz García, Luis
  • Bodria, Luigi
  • Guidetti, Riccardo
Tipo de Documento: Artículo
Título de Revista/Publicación: Food and Bioprocess Technology
Fecha: 2011
Materias:
Palabras Clave Informales: Brown egg; eggshell defect; vision system; multispectral image; image processing; automatic identification.
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Ingeniería Rural [hasta 2014]
Grupo Investigación UPM: LPF-TAGRALIA
Licencias Creative Commons: Ninguna

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (439kB) | Vista Previa

Resumen

The objective of this research was to develop an off-line artificial vision system to automatically detect defective eggshells, i.e., dirty or cracked eggshells, by employing multispectral images with the final purpose to adapt the system to an on-line grading machine. In particular, this work was focused to study the feasibility of identifying organic stains on brown eggshells (dirty eggshell), caused by blood, feathers, feces, etc., from natural stains, caused by deposits of pigments on the outer layer of clean eggshells. During the analysis a total of 384 eggs were evaluated (clean: 148, dirty: 236). Dirty samples were evaluated visually in order to classify them according to the kind of defect (blood, feathers, and white, clear or dark feces), and clean eggshells were classified on the basis of the colour of the natural stains (clear or dark). For each sample digital images were acquired by employing a Charged Coupled Device (CCD) camera endowed with 15 monochromatic filters (440-940 nm). A Matlab® function was developed in order to automate the process and analyze images, with the aim to classify samples as clean or dirty. The program was constituted by three major steps: first, the research of an opportune combination of monochromatic images in order to isolate the eggshell from the background; second, the detection of the dirt stains; third, the classification of the images samples into the dirty or clean group on the basis of geometric characteristics of the stains (area in pixel). The proposed classification algorithm was able to correctly classify near 98% of the samples with a very low processing time (0.05s). The robustness of the proposed classification was observed applying an external validation to a second set of samples (n = 178), obtaining similar percentage of correctly classified samples (97%).

Más información

ID de Registro: 9612
Identificador DC: http://oa.upm.es/9612/
Identificador OAI: oai:oa.upm.es:9612
Identificador DOI: 10.1007/s11947-011-0672-x
URL Oficial: http://www.springerlink.com/content/07m8504356281v84/fulltext.pdf
Depositado por: Investigador contratado Loredana Lunadei
Depositado el: 09 Nov 2011 06:46
Ultima Modificación: 20 Abr 2016 17:58
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM