A Simple Digital Imaging Method for Dirt Detection on Eggshells

Lunadei, Loredana; Ruiz García, Luis; Guidetti, Riccardo; Bodria, Luigi y Ruiz-Altisent, Margarita (2011). A Simple Digital Imaging Method for Dirt Detection on Eggshells. En: "2011 CIGR Section VI International Symposium", 18-20 Abril 2011, Nantes (France).

Descripción

Título: A Simple Digital Imaging Method for Dirt Detection on Eggshells
Autor/es:
  • Lunadei, Loredana
  • Ruiz García, Luis
  • Guidetti, Riccardo
  • Bodria, Luigi
  • Ruiz-Altisent, Margarita
Tipo de Documento: Ponencia en Congreso o Jornada (Póster)
Título del Evento: 2011 CIGR Section VI International Symposium
Fechas del Evento: 18-20 Abril 2011
Lugar del Evento: Nantes (France)
Título del Libro: Towards a Sustainable Food Chain - Food Process, Bioprocessing and Food Quality Management
Fecha: Abril 2011
Materias:
Palabras Clave Informales: Brown eggs, eggshell defect, vision system, multispectral image, image analysis.
Escuela: E.T.S.I. Agrónomos (UPM) [antigua denominación]
Departamento: Ingeniería Rural [hasta 2014]
Grupo Investigación UPM: LPF-TAGRALIA
Licencias Creative Commons: Ninguna

Texto completo

[img]
Vista Previa
PDF (Document Portable Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (74kB) | Vista Previa
[img]
Vista Previa
PDF (Document Portable Format) (poster) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

The objective of this research was to develop an off-line vision system to detect defective eggshells, i.e., with dirty eggshell, by employing a classification algorithm based on a few logical operations, allowing a further implementation in an on-line grading process. In particular, this work was focused to study the feasibility of identifying and differentiating dirt stains on brown eggshells caused by organic residuals, from natural stains, caused by deposits of pigments. Digital images were acquired from 384 clean and dirty brown eggshells by employing a CCD camera endowed with 15 monochromatic filters (440-940 nm). Each dirty eggshell presented only one kind of defect, i.e., blood stains, feathers and white, clear or dark faces, while clean eggshells did not present organic residuals or evidences of feather, but their external color was characterized by clear or dark natural stains. A MatLab® devoted code was developed in order to classify samples as clean or dirty. The program was constituted by three major steps: first, the research of an opportune combination of monochromatic images in order to isolate the eggshell from the background; second, the detection of the dirt stains; third, the classification of the images samples into the dirty or clean group. The proposed classification algorithm was able to correctly classify near 93% of the samples. The robustness of the proposed classification was observed applying an external validation to a second set of samples, obtaining similar percentage of correctly classified samples (92%).

Más información

ID de Registro: 9709
Identificador DC: http://oa.upm.es/9709/
Identificador OAI: oai:oa.upm.es:9709
Depositado por: Investigador contratado Loredana Lunadei
Depositado el: 16 Nov 2011 11:59
Ultima Modificación: 20 Abr 2016 18:01
  • Open Access
  • Open Access
  • Sherpa-Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Recolecta
  • e-ciencia
  • Observatorio I+D+i UPM
  • OpenCourseWare UPM