© 2009 EUROISIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s). Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is granted to photocopy portions of the publication for personal use and for the use of students providing credit is given to the conference and publication. Permission does not extend to other types of reproduction nor to copying for incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed.

EUROISIS-ETI Publications are ISI-Thomson and INSPEC referenced.

Selected papers of this conference are published in scientific journals.

For permission to publish a complete paper write EUROISIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV, Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROISIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400 Ostend, Belgium.

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium

EUROISIS-ETI Publication
ISBN: 978-90-77381-4-89
EAN: 978-90-77381-4-89
CONTENTS

Development and Evaluation of Traffic Management Strategies for Personal Rapid Transit
Pengjun Zheng, David Jeffery and Mike McDonald .. 191

Microsimulation Models in Intermodal Container Terminals ordinary and perturbed Conditions
Vincenzo Assumma and Antonino Vitetta ... 196

HOSPITAL INFRASTRUCTURE LOGISTICS

Quality of Service in Transplantation via the Electronic Medical Record
David Belo, Miguel Miranda, Antonio Abelha, Jose Machado and Jose Neves .. 203

System Dynamics Approach for Modelling Complex Healthcare Systems
Ruby Wai Chung Hughes and Terrence Perera ... 209

Paediatric palliative care planning: models and simulation
Giada Aspergh, Paola Facchin, Anna Ferrante, Laura Visonà Dalla Pozza and Giorgio Romanin Jacur ... 214

Birth and perinatal assistance network on the territory: model and simulation of service dynamical behaviour
Paola Facchin, Anna Ferrante, Elena Rizzato, Laura Salmaso and Giorgio Romanin-Jacur .. 219

Critical newborn assistance in intensive care units: model and simulation
Monica Da Frè, Paola Facchin, Elena Rizzato, Laura Salmaso, Laura Visonà Dalla Pozza and Giorgio Romanin-Jacur .. 222

MULTIBODY SIMULATION

Methodology for Flexible Modeling of Escalator Multibody Systems
Juan D. Cano-Moreno, José Mª Cabanellas Becerra, Carlos Labajo Tirado and Jesús Félez Mindán ... 227

Spatial Kinematics of Gears in Absolute Coordinates
Dmitry Vlasenko and Roland Kasper ... 232

Modeling and Simulation of Gait for MERO Modular Walking Robot crossing an unarranged Terrain
Ion Ion, Alexandru Marin, Cristian Doicin and Constantin Chirita .. 237

Modeling, Simulation and Control of Rotary Wing Platforms in a Computer Generated Forces Toolkit
Samuel Franko, Seniha Köksal and Mehmet Haklidır .. 243
Methodology for Flexible Modelling of Escalator Multibody Systems

Juan D. Cano-Moreno
José Mª Cabanelas Becerra
Carlos Labajo Tirado
Jesús Félez Mindán
Universidad Politécnica de Madrid
Escuela Técnica Superior de Ingenieros Industriales.
Centro de Investigación de Tecnologías Ferroviarias
c/Jose Gutiérrez Abascal, nº 2.
28006, Madrid, Spain
E-mails: [cctef, jdecano, jmca
cabanelas]@etsii.upm.es

KEYWORDS
Escalator simulation, Multibody dynamics, SIMPACK,
Dynamic Modelling, Robust Design

ABSTRACT

This paper presents some particular escalator modelling
features and methodologies developed to dramatically reduce
time cost regarding two aspects: computation and
implementation.

CITET (Railway Technologies Research Centre) has been
modelling escalators for three years. During this time,
several static, kinematic and dynamic escalator models have
been developed and improved. In parallel, automation tools
mainly intended for saving time cost have been described in
a piecemeal fashion. These tools are based on the
repetitiveness of the bodies, and a definition of the joints,
forces and loops, and on the cyclic movement of most of the
bodies involved. In addition, noise signals have been
programmed from MATLAB to simulate them in SIMPACK
software in order to apply robust design methods for
studying and optimizing certain parameters.

INTRODUCTION

Escalator design has been carried out successfully for more
than a century. An exhaustive analysis of patents and
viability studies of static, kinematic and dynamic models has
been the starting point for developing a methodology to
simulate and analyze the overall behavior of this Multibody
system from three points of view: static, kinematic and
dynamic. All of these kinds of models have produced
coherent results. Some representative results have been
presented in past papers (Cabanellas et al. 2008a; Cano et al.
2008)
The methodology and models have been developed in
parallel form as a feedback system.

STATE OF THE ART

One and a half centuries have passed since the first escalator
patent was taken out in 1859, shown in Figure 1. The history
of escalators (Cabanellas et al. 2008b; Minavete and Larrode
2007) shows that no drastic change in their basic mechanism
and working form has taken place.

Figure 1: Nathan Ames Revolving Stairs (1859)

Escalator Simulation Models

The number of escalator simulation models developed has
been very small so far. When searching for publications in
the bibliography related to this field, few papers have been
found. LG Industrial Systems (LGIS) has used computer
simulation to develop escalators that improve performance
over conventional designs using DADS Multibody dynamics
software (Sug 1999a).

Despite no other full escalator dynamic simulation models
having been found, there are other partial dynamic models
related to the study of escalator device handrail systems (Sug
2005) and vibration reduction using robust design (Sug
1999b).
ESCALATOR MODELLING

Mechanically, an escalator is a Multibody system with a considerable number of bodies with their respective joints, contact forces, restrictions, etc. As previously stated herein, there is hardly any bibliography or information on escalator modelling and simulation. CITF has had to research and select some tools to simulate the static, kinematic and dynamic behavior.

Advanced and complex dynamic models of more than 1000 degrees of freedom have been developed and simulated successfully using SIMPACK (Simulation of Multibody System Package) software. CITF has had long experience in modelling multibody dynamics behavior using this software. In addition, as conventional escalators are mainly moved using two roller chains linked to each step with a revolute joint, a specific chain modelling SIMPACK module has been used to develop some models. Figure 2 shows a conventional escalator model moved using traction gear wheels. In this model, all chain bodies like chain links, tensioner and traction systems have been modelled by the chain module.

![Figure 2: Conventional Escalator modelled using SIMPACK Chain Module](image)

However, this process has meant confronting some difficulties, some of which have been overcome with the methods described in this paper.

For a start, roller-guide contact has been solved as a force between two mobile markers named parent and child markers, as Figure 3 shows. Each parent and child marker has an assigned geometry in which they can move. The child marker is always located at the minimum distance from the parent marker, moving along following its geometry. The contact force has been defined with a spring-damper parallel force element.

![Figure 3: Roller-Guide Contact Force Definition](image)

On the other hand, two types of traction systems have been simulated. A conventional traction system designed using SIMPACK CHAIN module (Cabanellas et al. 2008c), where chain link bodies, their contacts and traction and tensioner system can be created. In addition, linear traction has been simulated using a proportional control system that applies the longitudinal traction force on each chain link in order to maintain its velocity, as the reference velocity curve indicates, during the definite length control.

![Figure 4: Reference Velocity for Control System](image)

A tensioner system has been created in SIMPACK basic software by doubling the mobile markers and the contact forces existing between them.

In addition, some parameterized programs have been created to facilitate the implementation of some specific guide shapes like pulse-free curves or guides with an inconstant radius, taking into account that these bodies are not made of basic geometries.

Finally, if the time cost is analyzed, there are two clear fronts with a potential high time investment:

1. More than 500 bodies are defined in a model of an escalator with a height of around 4 m. and with a 30° inclined angle.
2. For the most complex models it can take more than a week to simulate a full cycle in some cases. Therefore, time integration is a decisive factor in escalator modelling.

Thus, it is clear that automation in the modelling process is a necessity if greater efficiency is to be obtained. No less important is the time integration, because the main objective of Multibody simulation is to save time and cost compared to research that uses real prototypes to test improvements.

This paper shows how to save integration time and obtain all cycle results in certain cases, under specific hypotheses.

AUTOMATION TOOLS

As we have already described, the simulation of escalator dynamics requires an enormous cost in modelling process and simulation time. CITF has developed some tools and methodologies in order to reduce both of these drawbacks. The overall dynamic behavior of escalators is dictated by the traction roller chains. These Multibody systems are made up of some repetitive bodies: Chain links (inner and outer), rollers and others auxiliary bodies. In addition, almost all of these bodies have a cyclic movement. Most of the tools developed are based on these characteristics.
Superposition Process

In a permanent regime and with a stationary state, the kinematic and dynamic outputs of each roller or chain link are the same as the previous roller or chain link when they reach the same position. In other words, the values of these outputs are scalar fields because they depend on their position, \(x \) and \(y \) for instance, for a 2D model. Then, a time variable can be expressed by these spatial variables. This assumption is clear in static and kinematic analysis, however, dynamic simulation adds some oscillations in position and velocity, which have been considered negligible when the hypothesis described can be carried out.

\[
F(t) = F(t + nT_c) = G(x, y)
\]

(1)

\(n \) number of cycles
\(T_c \) period of a cycle

Therefore, an output variable like velocity along the time of a chain roller, represented in Figure 5, can be associated with its guide geometry.

![Velocity Output along the Time](image)

Figure 5: Velocity Output along the Time

By way of illustration, Figure 6 shows the previous velocity output as a scaled offset of the geometry that the corresponding roller has followed. Thus, each colored line length is proportional to velocity values, and all points of the geometry have an associated velocity. Other important dynamic variables such as longitudinal chain link force, roller-guide contact force, step, roller or chain link acceleration, etc., have the same property.

![Velocity Polar Diagram](image)

Figure 6: Velocity Polar Diagram

As a result, each output function of any variable related with the bodies which move along the guides could be obtained from the different output functions measured during a time period corresponding to a chain link pitch.

Code Generation

Escalator dynamic model generation involves a hard and heavy task of implementation that supposes a time cost increase. Several MATLAB programs have been created in such a way that there are a lot of bodies, markers, joints, forces, restrictions, etc, with similar functions and definition.

These programs developed produce and export to a separate text document the corresponding code that has been used in SIMPACK files to define each repetitive feature of the model. Therefore, the number of chain links in the roller chain of the model is irrelevant.

On the other hand, full SIMPACK files have been generated from MATLAB software in order to define some parameterized geometries, like guide geometries, single input functions and input functions arrays. These files are fully legible by SIMPACK software.

Input functions are temporary functions that can be used to define a lot of SIMPACK variables. Thus, some applied states have been reproduced (empty or full escalator, an escalator becoming full, etc.). One of the advantages of using this implementation method is that any programmable function in MATLAB can be used in SIMPACK simulations.

SIMULATION AND RESULTS ANALYSIS

All the tools and methodologies previously described have been successfully tested with several models for reducing time integration and to make a robust analysis. Some applications of the tools that have been described in this paper are explained.

Incremental Construction of Time Responses

The superposition process has been mainly used in advanced and complex models where time integration is a critical factor. It is necessary to select a range of time corresponding to the time in which each roller chain reaches the next one. Although the starting time point could be any, for example, second 23, as the following figures show, the less the initial time, the greater the time cost reduction.

Figure 7 shows the absolute linear velocity output of a dynamic escalator model simulated in SIMPACK. This model is characterized by chain links of 0.405 m, a reference absolute linear velocity of 0.5 m/s and linear traction system located at the upper part of the right inclined zone. All bodies have been modelled as rigid bodies and friction force has not been taken into account. In addition, the case simulated is an "empty escalator".

Four rollers, called sequentially, have been selected in order to exemplify how the superposition tool works. From starting time, a range of 0.81 seconds has been plotted for all rollers. The lower plot shows the continuous simulation of the first roller, checking stretch by stretch the coherence between both reconstructed and continuous signals.
Hereafter, the efficiency and consistency of this tool will be statistically quantified for some different outputs of this model by correlation coefficient.

Robust Design

Taguchi Methods (Wu 1997) have been applied to study the most robust tensioner parameters design that minimizes velocity standard deviation. The tensioner system is defined by three parameters: damping, stiffness and pre-load force. Three levels have been selected for each parameter. The equation below shows the formula used to calculate the signal-to-noise ratio by applying the minimization criterion.

\[
S/R = -10 \cdot \log_{10} \left[\frac{1}{n} \sum_{i=1}^{n} Y_i^2 \right]
\]

(2)

The noise signal is made up of random loads that represent the weight of passengers distributed by a statistical probability distribution with a mean and a pre-selected standard deviation. In addition, the probability of a passenger going up on the escalator is 50%. A code generation tool has been used to create the input functions arrays that define one noise signal for each step, for any number of cycles, chain link pitch or number of steps. All of these characteristics are parameterized in MATLAB code.

As an example, Figure 8 shows five noise signals of five consecutive steps for 20 cycles of an escalator with 60 steps, a distance between step roller of 0.405 m and a reference velocity of 0.5 m/s. The probability distribution used is a uniform distribution with a mean of 97 kg and a standard deviation of 5.625 kg.

This technique could be used to optimize any other parameter in a robust way, saving the costs of real experiments that involve a prototype construction.

DISCUSSION

Different outputs related to bodies that are moving in a closed curve have been generated using this superposition process. Thus, static, kinematic and dynamic outputs along a cycle have been reconstructed. The most critical reconstruction is the dynamic one, so, this paragraph is dedicated to analyzing the coherence between real and reconstructed signals.

Dynamic reconstruction requires simulating for around 5 seconds. Theoretically, less than a second would be enough, however, there is a transitory regime at the beginning and constant velocity is reached after a few seconds, depending on how the reference velocity for the control system is defined.

Although characteristic escalator dynamic outputs have been selected, only some of them are suitable for applying this tool: step velocity and acceleration, longitudinal chain link force and roller-guide contact force have been used to analyze this tool.

Longitudinal chain link force has been selected to illustrate how this tool works. This output belongs to a model of an empty escalator with a height of 4.5m powered with a linear traction system. As Figure 9 shows, both represented curves, the obtained curve and the real curve, are close to being superposed. The Real Curve has been obtained by a cycle of simulation, in order to compare with the curve created through the superposition process.

The resemblance between both signals has been analyzed statically using regression analysis. Thus, straight-line equations have been obtained for each variable, as the symbolic equation below shows.

\[
V(\text{real}) = a + b \cdot V(\text{reconstructed})
\]

with \(a \to 0 \) and \(b \to 1 \)

(3)

The Observed-Predicted graphic is shown in Figure 10, distinguishing a clear straight line that divides the first quadrant, which means the independent parameter of equation (3) tends to be null and the other tends to the unity.

Figure 8: Noise Signal Example

Figure 9: Longitudinal Chain Link Force Comparison
The rest of the reconstructed outputs present similar statistical results to the example described in this work. The working form of this tool has been evaluated by correlation coefficients, represented in Figure 11 as a bar diagram.

As the minimum correlation coefficient exceeds 0.99, this tool presents an efficient, accurate, consistent and powerful method for reconstructing any signal under the assumptions previously detailed. Thus, time integration cost is dramatically reduced. As Table 1 shows, the time cost reduction can reach 90% in relative terms for a full load case, and a range of 18 to 45 days per full cycle simulation.

Table 1: Time Simulation Comparison

<table>
<thead>
<tr>
<th>Without Load (50 seconds)</th>
<th>Superposition Process (5 seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.5</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>

CONCLUSIONS

All the aforementioned tools and methodologies described have been successfully tested with several models, obtaining a complete and flexible methodology to model and simulate overall escalator behavior, reducing time cost and resolving some modeling problems.

CITF is developing and implementing new concepts in escalators, a product that has become stagnant or constant since its conception. Some lines of research are being followed by CITF with simulation software always being the option for testing and analyzing any conventional or innovative model.

Furthermore, CITF is working to develop a full design cycle methodology in the escalator field that will be completed with a dynamic model experimental validation.

REFERENCES

BIBLIOGRAPHY

JUAN DAVID CANO-MORENO works as a Research Engineer for CITF. He is specialized in escalator simulation and design. He received his Master’s Degree in Mechanical Engineering from the Universidad Politécnica de Madrid. At present he is preparing his Ph. D Thesis.

JOSÉ MARÍA CABANELLAS BECERRA is Associate Professor in the Mechanical and Manufacturing Engineering Department of the Universidad Politécnica de Madrid. His Ph.D. Thesis was on System Modelling and Simulation like the major projects that he manages in CITF.

CARLOS LABAJO TIRADO works as a Research Engineer in CITF. He is specialized in escalator instrumentation and signals processing. He received his Master’s Degree in Mechanical Engineering from the Universidad Politécnica de Madrid.

JESÚS FÉLEZ MINDÁN is Full Professor at the Universidad Politécnica de Madrid. He is currently the director of CITF. He has wide experience in System Modelling and Simulation and has published a large number of technical papers on the subject.