eprintid: 30920 rev_number: 19 eprint_status: archive userid: 3178 dir: disk0/00/03/09/20 datestamp: 2014-10-27 08:24:36 lastmod: 2014-10-27 08:24:36 status_changed: 2014-10-27 08:24:36 type: book_section metadata_visibility: show item_issues_count: 0 creators_name: Rueda Pérez, Sonia Luisa title: Sparse differential resultant formulas: between the linear and the nonlinear case publisher: ACA 2013 rights: none ispublished: pub subjects: matematicas full_text_status: public abstract: A matrix representation of the sparse differential resultant is the basis for efficient computation algorithms, whose study promises a great contribution to the development and applicability of differential elimination techniques. It is shown how sparse linear differential resultant formulas provide bounds for the order of derivation, even in the nonlinear case, and they also provide (in many cases) the bridge with results in the nonlinear algebraic case. date_type: published date: 2013-07 place_of_pub: Málaga pagerange: 102-106 institution: Arquitectura department: Matematica_Aplicada isbn: 978-84-616-4565-7 book_title: Proceedings Applications of Computer Algebra 2013 editors_name: Galán García, José Luis editors_name: Aguilera Venegas, Gabriel editors_name: Rodríguez Cielos, Pedro citation: Rueda Pérez, Sonia Luisa (2013). Sparse differential resultant formulas: between the linear and the nonlinear case. In: "Proceedings Applications of Computer Algebra 2013". ACA 2013, Málaga, pp. 102-106. ISBN 978-84-616-4565-7. document_url: http://oa.upm.es/30920/1/Rueda_ACA2013_RepositoryVersion.pdf