eprintid: 54637 rev_number: 25 eprint_status: archive userid: 4868 dir: disk0/00/05/46/37 datestamp: 2019-04-10 10:09:00 lastmod: 2019-04-10 10:09:00 status_changed: 2019-04-10 10:09:00 type: conference_item metadata_visibility: show creators_name: Haber Guerra, Rodolfo E. creators_name: Galán López, Ramón creators_id: rodolfo.haber@upm.es creators_id: ramon.galan@upm.es title: Presente y Futuro del Control Inteligente rights: by-nc-nd ispublished: pub subjects: industrial subjects: robotica full_text_status: public pres_type: paper keywords: Control inteligente, lógica borrosa, redes neuronales, sistemas neuroborrosos abstract: : Esta contribución muestra la tendencia actual, así como los desarrollos que se prevén para el futuro dentro del Control Inteligente. Como herramienta basada en la Automática y en la Inteligencia Artificial los avances se producen con la mejora en las técnicas de control y/o por los progresos en las técnicas básicas de inteligencia artificial. El trabajo se ha estructurado como una revisión de cada una de las técnicas empleadas y su área de aplicación intentando dar una visión de conjunto del Control Inteligente. Se han incluido numerosas referencias que permitan al lector interesado profundizar en el estudio de cada aspecto descrito date_type: published date: 2009 place_of_pub: Bilbao event_title: V Simposios CEA de Control Inteligente event_location: Bilbao event_dates: 10 al 12 de junio de 2009 event_type: conference institution: Industriales department: Automatica refereed: TRUE book_title: Actas V Simposios CEA de Control Inteligente referencetext: Aarts E. H. L., J. H. M. Korst (1989). Simulated Annealing and Boltzmann Machines, Wiley: New York. Abdelhammeed M.M., U. Pinspon, S. Cetinkunt (2002). Adaptive learning algorithm for cerebellar model articulation controller, Mechatronics 12(6), 859-873. Al-Hadithi B. M., Matía F., Jiménez A. (2005). Controladores Borrosos Basados en Estructura Variable con Modos Deslizantes: Aspectos y Similitudes. Revista Iberoamericana de Automática e Informática Industrial 2(1), 19-35 Albertos P., A. Sala (2004). El control borroso: una metodología integradora, Revista Iberoamericana de Automática e Informática Industrial 1(2), 22-31. Alique, A., Haber, R. E., Haber, R. H., Ros, S., and Gonzalez, C. (2000). A neural network-based model for the prediction of cutting force in milling process. A progress study on a real case. Paper presented at the Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on. Almutairi N.B., M.-Y. Chow (2002). Parameterization using adaptive fuzzy modulation (AFM) for networked control systems. II. Full adaptation, Proc. of 28th. Annual Conference of the Industrial Electronics Society (IECON02), 4, Nov. 5-8, 3158-3163. Andújar J.M., J. M. Bravo, A. Peregrín (2004). Stability analysis and synthesis of multivariable fuzzy systems using interval arithmetic Fuzzy Sets and Systems 148(3), 337-353. Andújar J. M., Barragán A. J., Córdoba J. M., Fernández I. (2006). Diseño de Sistemas de Control Borroso: Modelado de la Planta. Revista Iberoamericana de Automática e Informática Industrial. 3 (1), 75-81 Aoki S., S. Kawachi, M.Sugeno (1990). Application of fuzzy control logic for dead-time processes in a glass melting furnace, Fuzzy Sets and Systems 38, 251-265. Aracil J. (2002). Control Engineering at Beginning of a Century, Plenary Papers, Survey papers and Milestones, 15 Congreso de IFAC, 3-10. Arahal, M.R., M. Berenguel, E.F. Camacho (1998), Neural identification applied to predictive control of a solar plant. Control Engineering Practice 6(3), 333-344. Åström K.J. (1999), Automatic Control –The Hidden Technology, in P.M. Frank (Ed.), Advances in Control, Springer-Verlag, 1-28. Baruch I.S., Hernández L. A., Pozo A. del, Barrera-Cortes J. (2005). Control Neuronal con Término Integral para un Proceso de Fermentación. Revista Iberoamericana de Automática e Informática Industrial 2(1), 64-69 Berenji H. R. (1992). Learning and tuning fuzzy logic controllers through reinforcements, IEEE Trans. Neural Networks 3, 724-740. Bonissone P.P., Y.T. Chen, K. Goebel, P.S. Khedkar (1999). Hybrid soft computing systems, Industrial and Commercial Applications, Proceedings of IEEE 87(9), 1641-1667. Caballero J.A., I.E. Grossmann (2007). Una revisión del estado del arte en optimización, Revista Iberoamericana de Automática e Informática Industrial, 4(1), pp. 5-23. Cabrera B.D., K.S. Narendra (1999). Issues in the application of neural networks for tracking based on inverse control, IEEE Transactions on Automatic Control, 44(11), 2007-2027. Cercone N., A. An, C. Chan (1999). Rule-induction and case-based reasoning: hybrid architecture appear advantageus, IEEE T. on Knowledge and Data Engineering 11(1), 166-174. Chen, F., H.K. Khalil (1995). Adaptive control of a class of nonlinear discrete-time systems using neural networks. IEEE Tans. on Automatic Control. 40 (5), 791-801. Chen L.-H., C.-H. Chiang (2003). New approach to intelligent control systems with self-exploring process, IEEE Transactions on Syst., Man&Cyb. Part B: Cybernetics 33(1), 56-66. Cordón O., F. Gomide, F. Herrera, F. Hoffmann, L. Magdalena (2004). Ten years of genetic fuzzy systems: current framework and new trends, Fuzzy Sets and Systems, 141, 5-31. Cuesta, F., F. Gordillo, J. Aracil, A Ollero (1999). Stability analysis of nonlinear multivariable Takagi-Sugeno fuzzy control systems, IEEE Transactions on Fuzzy Systems 7(5), 508-520. Czogala E., A. Mrózek, Z. Pawlak (1995). The idea of Rough Fuzzy controller and its application to the stabilization of a pendulum car system, Fuzzy Sets and Systems 72, 61-73. De la Cruz, J. (2003). Optimización multiobjetivo con restricciones, IV Curso de Especialización en Automática, 23-27 de Junio, Alicante. Díez, J. L. Navarro J. L., Sala A. (2004a). Control por Planificación de Ganancia con Modelos Borrosos. Revista Iberoamericana de Automática e Informática Industrial 1(1), 32-43. Díez, J. L. Navarro J. L., Sala A. (2004b). Algoritmos de Agrupamiento en la Identificación de Modelos Borrosos. Revista Iberoamericana de Automática e Informática Industrial 1(2), 32-41 Dorigo M., V. Maniezzo, A. Colorni (1996). The ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics—Part B 26(1), 29-41. Dueck G., T. Scheur (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing,” Journal of Computational Physics 90, 161-175. Eberhart R. C. (1995). Computational intelligence: A snapshot, in Computational Intelligence-A Dynamic System Perspective. Piscataway, NJ: IEEE Press, pp. 9-15. Er M.J., Y. Gao (2003). Robust adaptive control of robot manipulators using generalized fuzzy neural networks, IEEE Transactions on Industrial Electronics 50(3), 620-628. Felber P., P. Narasimham (2004). Experiences, strategies, and challenges in building fault-tolerant CORBA systems, IEEE Trans. Comput. 53(5), 497-511. Felser M. (2005). “Real-time Ethernet- industry prospective,” Proceedings of IEEE, 93(6), 1118-1129. Fink, A., O. Nelles and R. Isermann (2002). Nonlinear internal model control for MISO systems based on local linear neuro-fuzzy models. In Proceedings of the 15th IFAC World Congress. Barcelona, Spain. Fogel L.J., Owens A.J., M.J. Walsh (1966). Artificial intelligence through simulated evolution, New York, Wiley. Flemming P.J., R.C. Purshouse (2002). Evolutionary algorithms in control systems engineering: a survey, Control Engineering Practice 10, 1223-1241. Floreano D., J. Urzelai (2000). Evolutionary robotics with on-line self-organization and behavioral fitness. Neural Networks, 13, 431–443. Fukuda T., N. Kubota (1999), An intelligent robotic system based on a Fuzzy approach, Proceedings of the IEEE 87(9), 1448-1470. Fukuda T., T. Shibata (1994a). Synthesis of Fuzzy, Artificial Intelligence and Neural Networks for Hierarchical intelligent Control. Neural and Fuzzy Systems, 57-83. Fukuda T., T. Shibata (1994b). Fuzzy-Neuro-GA Based Intelligent Robotics, Computational Intelligence Imitating Life, IEEE Press, 352-363. Gajate, A., Haber, R. E., Alique, J. R., and Vega, P. I. (2009). Transductive-weighted neuro-fuzzy inference system for tool wear prediction in a turning process. In International Conference on Hybrid Artificial Intelligence Systems, pp. 113-120. Springer, Berlin, Heidelberg. Galán R., Jiménez A., Sanz R., Matía F. (2002) Monografía: Control Inteligente. Revista Iberoamericana de Inteligencia Artificial, No. 10 Geiger, D., Heckerman, D. (1996). Beyond Bayesian networks: Similarity networks and Bayesian multinets. Artificial Intelligence 82, 45-74. Gers, F. A., J. Schmidhuber, F. Cummins (2000). Learning to forget: continuous prediction with LSTM, Neural Computation 12(10), 2451-2471. Glover F., M. L. Laguna (1993). Modern Heuristic Techniques for Combinatorial Optimization, Chapter Tabu search. Blackwell Scientific: London, UK. Grant, E., B. Zhang (1989). A neural net approach to supervised learning of pole balancing. In: IEEE Int. Symposium on Intelligent Control, 123-129. Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley. Massachusetts, USA. Gong W. B., Y. C. Ho, W. Zhai (1992). Stochastic comparison algorithm for discrete optimization with estimation. in Proc. of the 31st IEEE Conference on Decision and Control, 795-800. Griñó R., G. Cembrano, C. Torras (2000). Nonlinear system identification using additive dynamic neural networks- Two on-line Approaches, IEEE T. Circuits and Syst. Part 1 47(2), 150-165. Grosz B., R. Davis (1995). A report to ARPA on twenty-first century intelligent systems, American Association for Artificial Intelligence. Guerra, R. H., Schmitt-Braess, G., Haber, R. H., Alique, A., and Alique, J. (2003). Using circle criteria for verifying asymptotic stability in PI-like fuzzy control systems: application to the milling process. IEE Proceedings-Control Theory and Applications 150(6), 619-627. Haber, R., Alique, J., Ros, S., and Peres, C. R. (1996). Fuzzy supervisory control of end milling process. Information Sciences, 89(1-2), 95-106. Haber, R., Haber, R., Alique, A., and Ros, S. (2000). Hierarchical fuzzy control of the milling process with a self-tuning algorithm. Paper presented at the Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on. Haber, R. E., Haber, R., Peres, C., Alique, A., and Ros, S. (2001). Model of the milling process on the basis of cutting force: A Neural network approach. In Advances in Neural Networks and Applications (N. Mastorakis Ed.), Artificial Intelligence Series, World Scientific and Engineering. Haber, R., Alique, A., Alique, J., Haber-Haber, R., and Ros, S. (2002). Current trends and future developments of new control systems based on fuzzy logic and their application to high speed machining. Revista de Metalurgia (Spain) 38, 124-133. Haber, R. E., Alique, J. R., Alique, A., Hernández, J., and Uribe-Etxebarria, R. (2003). Embedded fuzzy-control system for machining processes: Results of a case study. Computers in Industry 50(3), 353-366. Haber, R. E., and Alique, J. R. (2004). Nonlinear internal model control using neural networks: an application for machining processes. Neural Computing and Applications 13(1), 47-55. Haber Guerra R.E., Alique J.R., R. Haber-Haber, A. Alique (2005). Controlling a complex electromechanical process on the basis of a neurofuzzy approach, Future Generation of Computer Systems 21, 1083-1095. Haber-Guerra, R., Liang, S. Y., Alique, J. R., and Haber-Haber, R. (2006). Fuzzy control of spindle torque in high-speed milling processes. Journal of manufacturing science and engineering 128, 1014-1018. Haber, R. E., and Alique, J. R. (2007). Fuzzy logic-based torque control system for milling process optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37, 941-950. Haber, R. E., Haber-Haber, R., Del Toro, R. M., and Alique, J. R. (2007). Using simulated annealing for optimal tuning of a PID controller for time-delay systems. An application to a high-performance drilling process. Paper presented at the International Work-Conference on Artificial Neural Networks. Haber-Guerra, R. E., Haber-Haber, R., AndrÊs, D. M., and Palomar, A. A. (2008). Networked fuzzy control system for a high-performance drilling process. Journal of Manufacturing Science and Engineering 130(3), 031009. Haj-Ali A., H. Ying (2004). Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable. Automatica 40(9), 1551-1559. Haken H. (1997), Visions of Synergetics, J. Fralnkin Institute 334 (5-6), 759-792. Halevi Y., A. Ray (1988). “Integrated communication and control systems: Part I, analysis,” Transactions of ASME. Journal of Dynamic Systems, Measurement, and Control, 110, 367-373. Haykin S. (1999). Neural networks: a comprehensive foundation, Prentice Hall, New Jersey, 2nd..ed. Herrero J.M., Blasco X., Martínez M., Sanchis J. (2006). Identificación Robusta de un Proceso Biomédico Mediante Algoritmos Evolutivos. Revista Iberoamericana de Automática e Informática Industrial. 3 (4), 76-87. Homaifar A., E. McCormick (1995). Simultaneous design of membership functions and rule sets for fuzzy controllers using genetic algorithms, IEEE Trans. Fuzzy Syst. 3, 129-138. Hu H. T., H. M. Tai, S. Shenoi (1994). Incorporating cell map information in fuzzy controller design, in 3rd IEEE Conf Fuzzy Systems, June 26-29, 394-399. Hunt, K.J., D. Sbarbaro (1991). Neural networks for non-linear internal model control. In: IEE Proceedings-D, 431-438. Hwang W. R., W. E. Thompson (1993). An intelligent controller design based on genetic algorithm, in Frac. 32nd IEEE Conf. Decision Control, Dec. 15-17, 1266-1267. Hwang K.S., S.W. Tan, M.C. Tsai (2003). Reinforcement learning to adaptive control of nonlinear systems, IEEE Trans. Systems, Man and Cybernetics, Part B, 33(3), 514-521. Jang J. R. (1992). Self-learning fuzzy controllers based on temporal back propagation, IEEE Trans. Neural Networks 3, 714-721. Karr C. L., E. J. Gentry (1993). Fuzzy control of pH using genetic algorithms, IEEE Trans. Fuzzy Syst. 1, 46-53. Kawamura K., Alan P. R, Bodenheimer, R. Sarkar N., Park J, Clifton C.A., Spratley A.W. Hambuchen K. (2004) A Parallel Distributed Cognitive Control System For A Humanoid Robot International Journal Of Humanoid Robotics 1 (1) 65-93. Kazemian H.B. (2002). The SOF-PID controller for the control of a MIMO robot arm, IEEE Transactions on Fuzzy Systems 10(4), 523-532. Kiguchi K., K. Watanabe, T. Fukuda (2002). Generation of efficient adjustment strategies for a fuzzy-neuro force controller using genetic algorithms-application to robot force control in an unknown environment, Information Sciences 145, 113-126. Kim J., Y. Moon, B. P. Zeigler (1995). Designing fuzzy net controllers using genetic algorithms, IEEE Contr. Syst. 15(3), 66-72. Kim J., N. Kasabov (1999). HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems, Neural Networks 12, 1301-1319. Kinzel I., F. K1awoon, R. Kruse (1994). Modifications of genetic algorithms for designing and optimizing fuzzy controllers, in Proc. 1st IEEE Conf Evolutionary Computing (ICEC'94), Orlando, FL, 28-33. Koza J.R. (1992). Genetic programming- on the programming computers by means of natural selection, Cambrigde, M.A., MIT Press. Kruif B.J., T.J.A. de Vries (2003). Pruning error minimization in least squares support vector machines, IEEE Transactions on Neural Networks 14(3), 696-702. Lee M. A., H. Takagi (1993). Integrated design stages of fuzzy systems using genetic algorithms, in Frac. FUZZ-IEEE'93, San Francisco, CA, 612-617. Lee M.R., J.W. Lee (2003). A fuzzy inference network model for search strategy using neural logic network, J. of Intelligent and Robotic Systems 36, 209-221. Lee T. H., L. H. Nie, W. K. Tan (1995). A self-organizing fuzzified basis function network control system applicable to nonlinear servo-mechanisms, Mechatronics 5(6), 695-713. Lightbody, G. y G.W. Irwing (1997). Nonlinear control structures based on embedded neural system models. IEEE Trans. on Neural Network, 8(3), 553-567. Lozano- Perez T., L. Kaelbling (2003). Artificial Intelligence, MIT Press, MA. USA. Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life, 1, 135-162. Maes, P. (1991). Adaptive action selection. Proceedings of the 13 th. Annual Conference of the Cognitive Science Society, Hillsdale, N.J:Erlbaum, 108-113. Maher M.L., A. G. de Silva (1997). Case-based reasoning in design, IEEE Expert, 34-41. Martin, D., del Toro, R., Haber, R., and Dorronsoro, J. (2009). Optimal tuning of a networked linear controller using a multi-objective genetic algorithm and its application to one complex electromechanical process. International Journal of Innovative Computing, Information and Control 5(10), 3405-3414. Martínez M.A., J. Sanchis, X. Blasco (2006). Algoritmos genéticos aplicados al diseño de controladores robustos, Revista Iberoamericana de Automática e Informática Industrial, 3(1), 39-51. Matía F., B M. Al-Hadithi, A. Jiménez (2002). Generalization of stability criterion for Takagi–Sugeno continuous fuzzy model, Fuzzy Sets and Systems 129(3), 295-309. Mbede J.B., X. Huang, M. Wang (2003). Robust neuro-fuzzy sensor based motion control among dynamic obstacles for robot manipulators, IEEE Transactions on Fuzzy Systems 11(2), 249-261. McKellar H. (2003). Artificial Intelligence: Past and Future, Knowledge Management World 12(4). McCulloch, W.S., W.H. Pitts (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115-133. Miller, W.T., R.S. Sutton, J. Werbos (1990). Neural Networks for Control. MIT Press, Canbridge, MA. Montestruque L.A., P. Antsaklis (2004), Stability of model-based networked control systems with time-varying transmission times, IEEE Trans. on Automatic Control, 49(9), 1562-1572. Motter, M.A., J.C. Principe (2002). Predictive multiple model switching control with the self-organizing map. International Journal of Robust and Nonlinear Control, 12(11), 1029-1051. Muller-Glaser K., G. Frick, E. Sax, M. Kuhl, (2004). Multiparadigm modeling in embedded systems design, IEEE Transactions on Control Systems Technology 12(2), 279-292. Murray R.M., K.J. Astrom, S.P. Boyd, R.W. Brocket, G. Stein (2003). Future directions in control in an information-rich world, IEEE Control Systems Magazine, 20-32. Muscato G., G. Nunnari, M.G. Xibilia (2003). Attitude control of underwater robot by using hipercomplex neural networks, 6th. Int. Conf. On Climbing &Walking Robots, 225-232. Narendra, K. S., K. Parthasarathy (1990). Identification and control of dynamical systems using neural networks. IEEE Transc. on Neural Networks 1(1), 4-27. Noriega, J.R., H. Wang (1998). A direct adaptive neural-network control for unknown nonlinear systems and its application. IEEE Trans. on Neural Networks 9 (1), 27-34. Onnen C., R. Babuska (1997). Genetic algorithms for optimization in predictive control, Control Engineering Practice 5 (10), 1363-1372. Patiño H.D., R. Carelli, B.R. Kuchen (2002). Neural networks for advance control of robot manipulators, IEEE Transactions on Neural Networks 13(2), 343-354. Pawlak Z. (1995). Rough Sets, Communications in ACM. 38(11), 89-96. Pawlak Z. (1982). Rough Sets, Int. J. Comput. Inf. Sci. 11, 341-356. Petri C.A. (1962). Kommunikation mit Automaten, Ph.D. thesis, Institut fur Instrumentelle Mathematik, Bonn, Alemania. Plett G.L. (2003). Adaptive inverse control of linear and nonlinear systems using dynamic neural networks, IEEE T. on Neural Networks 14(2), 360-376. Ramón y Cajal S. (1897). Reglas y consejos sobre investigación científica: Los tónicos de la voluntad, decimoctava edición, 2005, Editorial Espasa Calpe. Rechenberg I. (1973). Evolutionsstrategies: Optimierung Technisher Systeme nach Prinzipien der Biologischen Evolution, Stuttgart, Germany: Fromman-Holzboog Verlag. Rubinstein R. Y., D. P. Kroese (2004). The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning. Springer: Berlin Heidelberg New York. Saaty T.L. (1980). The Analytic Hierarchy Process, Mc. Graw Hill, New York. Saludes, S., M.J. Fuente (1999). Neural-networks-based fault detection and accommodation in a chemical reactor. Proceedings of the 14th IFAC World Congress. Beijing, China. Saludes, S., M.J. Fuente (2003). Fault tolerant fuzzy IMC control in a pH process. In: Proc. of the European Control Conference, Cambridge, U.K. Sánchez, E.N., J.P. Pérez (2003). Input-to-state stabilization of dynamic neural networks, IEEE Transactions on Systems, Man and Cybernetics, Part A 33(4), 532-536. Sanner, R.M., J.E. Slotine (1992). Gaussian neural networks for direct adaptive control. IEEE Trans. on Neural Networks 3(6), 837-863. Santos M, Lopez R, de la Cruz JM (2006), A neuro-fuzzy approach to fast ferry vertical motion modelling, Engineering Applications of Artificial Intelligence 19(3), 313-321. Sanz, R. (1990). Arquitectura de Control Inteligente de Procesos. Tesis Doctoral. Dpto. De Automática, Ing. Electrónica e Informática Industrial, 1990. Sanz R. (2003). A CORBA-based architecture for strategic process control, Annual Reviews in Control 27, 15-22. Sbarbaro, D., T.A. Johansen (2005). Analysis of artificial neural networks for pattern-based adaptive control. IEEE Trans. on Neural Networks, 17 (5), 1184-1193. Selmic R.R., F.L. Lewis (2002). Neural network approximation of piecewise continuous functions: application to friction compensation, IEEE T. Neural Networks 13(3), 745-751. Seng T.L., M. B. Khalid, R. Yusof (1999). Tuning of a neurofuzzy controller by genetic algorithm, IEEE Trans. of Syst. Man& Cyb. Part B, 29(2), 226-236. Shann J. J., H. C. Fu (1995). A fuzzy neural network for rule acquiring on fuzzy control system, Fuzzy Sets Syst., 71, 345-357. Shaw, A.M., F.J. Doyle III (1997). Multivariable nonlinear control applications for a high purity distillation column using a recurrent dynamic neuron model. Journal of Process Control, 7(4), 255-268. Shimojima K., T. Fukuda, Y. Hasegawa (1995). Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm, Fuzzy Sets Syst. 71, 295-309. Smith P.J., Geddes N.D. (2002) A cognitive systems engineering approach to the design of decision support systems. Lawrence Erlbaum Associates, Inc. Mahwah, NJ, USA . 656-676 Strube, G. (1996). Kognition [Cognition]. In G. Strube et al. (Eds.), Wörterbuch der Kognitionswissenschaft. 303-317. Stuttgart: Klett-Cotta. Surmann H., A. Kanstein, K. Goser (1993). Self-organizing and genetic algorithms for an automatic design of fuzzy control and decision systems, in Proc. EUFIT'93, Aachen, Germany, 1097-1104. Sushil J. (2001). Physical system theory: fundamentals, recent developments and relationships with system dynamics, Kybernetes 31 (3/4), 496-528. Sutton R. S., A. G. Barto (2000). Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press. Suykens J.A.K. (2001). Support vector machines: a nonlinear modelling and control perspective, European Journal of Control 7, 311-327. Takagi H. (2001). Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation, Proceedings of IEEE 89(9), 1275-1296. Tan, Y., A. Cauwenberhe (1996). Non linear one step ahead control using neural networks: Control strategy and stability design. Automatica, 32(12), 1701-1706. Tang P-L., C.-W. de Silva (2006), Compensation for transmission delays in an Ethernet-based control network using variable-horizon predictive control, IEEE Transactions on Control Systems Technology 14(4), 707-708. Tiwari A., N. Shankar, J. Rushby (2003). Invisible formal methods for embedded control systems, Proceedings of IEEE 91(1), 29-39. Torres y Quevedo L. (1914). Ensayos sobre automática. Su definición. Extensión teórica de sus aplicaciones. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Madrid, 391- 419. Tzafestas S.G., G.G. Rigatos (2002). Fuzzy reinforcement learning control for compliance tasks of robotics manipulators, IEEE Transactions on Systems, Man and Cybernetic, Part B: Cybernetics. 32(1), 107-113. Urzelai J., D. Floreano (2001). Evolution of adaptive synpases: Robots with fast adaptive behavior in new environments. Evolutionary Computation 9(4), 495– 524. Vapnik, V. (1995). Statistical learning theory, Springer-Verlag, NY, USA. Varsek A., T. Urbancic, B. Filipic (1993). Genetic algorithms in controller design and tuning, IEEE Trans. Syst., Man, Cybern., 23, 1330-1339. Vlachos C., Williams D., J.B. Gomm (1999). Genetic approach to decentralized PI controller tuning for multivariable process, IEE Proc. Control Theory & Appl., 146(1), 58-64. Wai R.J. (2003). Tracking control based on neural network strategy for robot manipulator, Neurocomputing 51, 425-445. Yao X., Y. Lin (1997). A new evolutionary system for evolving ANN, IEEE Transactions on Neural Networks 8(3), 694-713. Ying H. (1999). Analytical structure of typical fuzzy controllers employing trapezoidal input fuzzy sets and nonlinear control rules, Information Science 116, 177-203. Yu, D.L., T.K. Chang, D.W. Ty (2005). Adaptive neural model-based fault tolerant control for multi-variable processes. Eng. Applications of Artificial Intelligence, 18, 393-411 Zadeh, L.A. (1965). Fuzzy Sets, Information and Control 8, 338-353. Zhao Q., B.H. Krogh, P. Hubbard (2003). Generating test inputs for embedded control systems, IEEE Control Systems Magazine 3, 49-57. Zhang L., F. Huag-Jing (2006). A novel controller design and evaluation for networked control systems with time-variant delays. Journal of the Franklin Institute 343, 161-167. Zhang Y.-Q., Kandel A. (1998). Compensatory neurofuzzy systems with fast learning algorithms, IEEE Transactions Neural networks 9(1), 83-105. citation: Haber Guerra, Rodolfo E. and Galán López, Ramón (2009). Presente y Futuro del Control Inteligente. In: "V Simposios CEA de Control Inteligente", 10 al 12 de junio de 2009, Bilbao. document_url: http://oa.upm.es/54637/1/OA_UPM_2009b.pdf