2021-04-23T11:26:43Z
http://oa.upm.es/cgi/oai2
oai:oa.upm.es:16595
2016-04-21T16:55:19Z
7374617475733D707562
7375626A656374733D6165726F6E617574696361
7375626A656374733D666973696361
747970653D61727469636C65
Supersonic regime of the Hall-magnetohydrodynamics resistive tearing instability
Ahedo Galilea, Eduardo
Ramos, JesÃºs J.
Aeronautics
Physics
An earlier analysis of the Hall-magnetohydrodynamics (MHD) tearing instability [E. Ahedo and J. J. Ramos, Plasma Phys. Controlled Fusion 51, 055018 (2009)] is extended to cover the regime where the growth rate becomes comparable or exceeds the sound frequency. Like in the previous subsonic work, a resistive, two-fluid Hall-MHD model with massless electrons and zero-Larmor-radius ions is adopted and a linear stability analysis about a force-free equilibrium in slab geometry is carried out. A salient feature of this supersonic regime is that the mode eigenfunctions become intrinsically complex, but the growth rate remains purely real. Even more interestingly, the dispersion relation remains of the same form as in the subsonic regime for any value of the instability Mach number, provided only that the ion skin depth is sufficiently small for the mode ion inertial layer width to be smaller than the macroscopic lengths, a generous bound that scales like a positive power of the Lundquist number
E.T.S.I. AeronÃ¡uticos (UPM)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
2012-07
info:eu-repo/semantics/article
Article
Physics of Plasmas, ISSN 1070-664X, 2012-07, Vol. 19, No. 7
PeerReviewed
application/pdf
eng
http://scitation.aip.org/content/aip/journal/pop/19/7/10.1063/1.4739787
info:eu-repo/semantics/openAccess
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4739787
http://oa.upm.es/16595/