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INTRODUCTION 

Two combustion modes exist in the burning of a 
cloud of coal or fuel particles in air when, as is 
usually the case, the reaction rates are highly 
sensitive to temperature. One of these is a slow 
kinetically controlled mode, and the other is a fast 
diffusion-controlled mode. The transition from the 
first mode to the second may occur in an abrupt 
way as an ignition event, or thermal explosion, if 
the conditions are supercritical, or also as a result 
of a flame propagation process. 

In the classical theory of critical conditions for_ 
thermal explosions, consumption of the reactant is 
neglected and then a steady state for the tempera­
ture is possible only for subcritical conditions. 
This state results from the competition between 

two processes: heat release by an exothermic 
strongly temperature-sensitive chemical reaction 
and heat loss from the region where the reaction 
takes place to the cold surroundings. The early 
works of Semenov and Frank-Kamenetskii were 
reviewed by Zel'dovich et al. [1]. In these works a 
conductive or conductive-convective heat loss was 
assumed. On the other hand, when there are 
particles suspended in a gas, as is the case in coal 
dust clouds burning in air, radiation becomes an 
important, often dominant, heat transfer mecha­
nism, and the spatial derivatives of the radiative 
heat flux appear in the energy-balance equation. 
Evaluation of radiant heat loss requires, in princi­
ple, the calculation of the radiation intensity 
distribution from the equation of radiative trans­
fer. Even for a one-dimensional medium in local 
thermodynamic eqUilibrium, this is an integrodif­
ferential equation strongly coupled with the en-



ergy-balance equation through the dependence of 
the blackbody intensity on the local temperature. 
The resulting nonlinear, nonlocal problem is a 
highly complicated one, and several approximat­
ing techniques, including alternative expressions 
for the radiative heat transfer, have been devel­
oped to obtain approximate results. One of these 
techniques, the differential approximation, will be 
used in this paper. It is based on certain averages 
on the transfer equation leading, after definite 
approximations, to simple differential equations 
for the first moments of the intensity distribution. 
Details on the existing alternative formal methods 
to obtain the differential approximation can be 
found in Refs. 2 and 3. Directional averaging of 
the intensity distribution is involved in the differ­
ential approximation, so that it is better suited for 
planar geometries, and it has found wide applica­
tion in dusty flame models, where, in addition, it 
reduces to the exact results in the optically thin and 
optically thick limits (Planck and Rosseland ap­
proximations, respectively). 

Models of dust-air flame propagation including 
radiation have been proposed. Differing in other 
respects, the models of Essenhigh and Csaba [4] 
and Bhaduri and Bandyopadhyay [5] both treat the 
flame as a gray body of fixed temperature; the 
radiation intensity decays exponentially away from 
the flame due to the absorption by the particles, 
but radiation emitted or scattered by these particles 
is neglected. The differential approximation to 
model radiative transfer has been used by Ozenova 
and Stepanov [6] and Krazinski et al. [7]. Field 
et al. [8] employed flux methods to determine 
radiation fluxes in scattering reacting media. The 
radiative equation, together with the nonlinear 
stationary energy-balance equation, was integrated 
numerically by Khalil et al. [9, 10] in the analysis 
of reaction-radiation equilibria of particle suspen­
sions in plane geometry with a single-temperature 
model; the effects of the radiative properties of the 
medium and the walls, and of the parameters of the 
heat generation model on the critical conditions for 
extinction, are illustrated by numerical examples. 
The ignition problem was solved by Joulin [11] 
using the differential approximation. His results 
show that reaction-radiation equilibria represent a 
transition path from the Semenov to the Frank-
Kamenetskii critical conditions, which are recov­

ered for optically thin and optically thick media, 
respectively. 

The ignition process can be the result of 
reactions occurring in the gas phase due to the 
released volátiles or can result from reactions at 
the surface of the particles. What actually happens 
in a given case seems to depend on many factors, 
including heat-up rate, particle size, and gas-phase 
composition. The older theories were based on 
gas-phase ignition, but experimental results exist 
that favor the view of heterogeneous ignition, the 
pyrolysis of the solid taking place well before or 
well after the ignition event. An extensive review 
on the relevance of heterogeneous ignition and the 
nature of the heterogeneous reactions was pre­
sented by Essenhigh [12]. The effects of surface 
processes (adsorption, chemical reaction, desorp-
tion) are often accounted for by a proper choice of 
the order and activation energy of an overall 
Arrhenius reaction. A model including two hetero­
geneous reactions was applied by Libby and Blake 
[13, 14] to the theoretical study of the ignition, 
combustion, and extinction of a single carbon 
particle. On the other hand, it is recognized that 
the heterogeneous reactions can be diffusion con­
trolled during most of the particle lifetime, espe­
cially for large particles or high temperatures. In 
fact, Libby and Blake [13] showed that the 
consumption rate does not change very much when 
the state of the gas phase goes from chemically 
frozen to chemical equilibrium. 

In this paper a heterogeneous ignition analysis is 
presented for a coal particle suspension. Only the 
heterogeneous reaction C(s) + 1/2 0 2 -• CO is 
considered, and the devolatilization and gas-phase 
chemical reactions are neglected. Radiative trans­
fer is modeled by means of the differential 
approximation. We shall account in the analysis 
for the temperature differences between the parti­
cles and the ambient gas, which are important 
when the thermal capacity of the gas is large 
compared with the thermal capacity of the parti­
cles. 

FORMULATION 

We consider the following physical problem. A 
cloud of spherical monodisperse carbon particles 
at temperature 7̂ 0 is suddenly injected in the space 



between two parallel infinite planar walls. This 
space is filled with a hot oxidizing gas initially at 
temperature Tg0 and oxygen mass fraction Yg0. 
The walls themselves are assumed to be at a 
constant temperature Tw. Energy transfer by 
radiation between the particles and between the 
particles and the walls is accounted for in the 
analysis, using the Eddington differential approxi­
mation. In addition, conductive heat transfer 
between the particles and the gas is included. The 
gas is assumed to be transparent to the radiation. 
For the ignition analysis, only the direct reaction 
C(s) + 1/2 0 2 -* CO is considered, with a mass 
consumption rate of carbon per unit surface given 
by the Arrhenius law 

m"=ZYexp(-Ta/Ts) (1) 

where Z represents the preexponential factor, Ta is 
the activation temperature, 7^ is the temperature of 
the solid particle surface, and Y is the mass 
fraction of oxygen at the particle surface. 

Due to the small gas/solid density ratio, the 
thermal diffusivity of the gas is much larger than 
that of the solid, and the heat conduction in the gas 
phase around every particle is a quasi-steady 
process. Besides, in most cases, the thermal 
conductivity of the solid is much larger than that of 
the gas, and therefore the temperature of each 
particle is nearly uniform during the particle 
heating. Under these conditions, the governing 
equations and boundary conditions for the problem 
are given by 
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and the initial conditions are the following: 

t = 0: Ts= Tso, Tg = Tg0, 

Yg = ĝo> R = Ro (8) 

Equation 2 is an energy balance for the particles. 
R is the particle radius; n is the particle number 
density; ps and Cs are the density and specific heat, 
respectively, of the solid phase; and Tg and kg are 
the temperature and thermal conductivity, respec­
tively, of the gas. Q is the heat released per unit 
mass of carbon, and x is the distance normal to the 
walls, measured from the center of the slab; the 
thickness of the slab is 21. Equation 3a provides 
the link between the radiation flux q and the 
particle temperature. As it stands, this equation 
models a gray nonscattering medium, but general­
izations to include more complex optical behaviors 
are straightforward within the framework of the 
differential approximation, a is the Stefan-Boltz-
mann constant, and L is the optical length, given 
by£ = 1/nrR2, except for an efficiency factor of 
order unity. Note that the temperature of the 
particles near the walls is different from the wall 
temperature. The boundary condition, Eq. 3b, 
corresponds to walls behaving as black bodies. 
Relations 4-6 result from the analysis of the quasi-
steady response of the gas phase (see, for example, 
Libby and Blake [13]). They have been written in 
a form valid for m"RCp/kg < 1, which is 
justified for the ignition analysis. Dg denotes the 
oxygen diffusion coefficient in the gas phase. 

When studying the ignition problem in the limit 
of large Zel'dovich numbers, the time variations 
of the particle radius and mass concentration of 
oxygen can be neglected in a first approximation. 
In addition to this, the oxygen mass concentration 
at the surface of the particles is the same as in the 
gas phase. Therefore Eqs. 5-7 do not play any role 
in what follows. It is clear that these simplifica­
tions eliminate the fast-burning regimes appearing 
in the analysis of Khalil et al. [9], in which the 
chemical reaction is diffusion-controlled. As 



pointed out by Joulin [11], the critical conditions 
presented by these regimes correspond to quench­
ing, and, though important, they bear no relation 
to the ignition analysis addressed here. 

To reduce the equations to nondimensional 
form, we introduce the following dimensionless 
variables: 

6S=TS/ Tg0, 6g=Tg/TgQ, <f> = q/Qc, 

T=tt/t„ £ = V3x/Z,0 (9) 

where 

tc = psCsRQ
2/3kg (10) 
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The resulting nondimensional problem is given 
by 
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Here A is the Damkohler number; the parameter / 
represents the gas/particles thermal capacity ratio; 

X is the nondimensional thickness of the slab, 
referred to the absorption length; TV is a conduc­
tion/radiation parameter and represents the ratio of 
heat transferred by conduction to that transferred 
by radiation; this parameter is of order unity for 
particles of 50 fim radius and a gas temperature of 
1000 K. 

The situation that we envisage here is that of an 
initially cold particle cloud (ds0 < 1) heated by 
conduction from the hot gas and by radiation from 
the walls, if the walls are also hot. 

IGNITION CONDITIONS 

The nondimensional activation energy is, in our 
case, a large number (/3 > 1) so it makes sense to 
define a critical temperature 0/ such that 

A exp m= (16) 

For values of the particle nondimensional temper­
ature 0S(£, T) smaller than 6,, the heat release due 
to the chemical reaction in Eq. 11 is exponentially 
small and does not play any role. In this frozen 
evolution, ds(£, r) increases from its initial value 
0jO and the nondimensional gas temperature 6g(£, 
T) also departs from unity. Both temperatures 
would tend to reach asymptotically the final 
common value 

-6g=6w vs — ug (17) 

in the absence of heat release by the chemical 
reaction. Ignition will occur, however, when the 
frozen particle temperature first reaches the value 
0/ at some point. By calling BM the maximum value 
of the particle temperature in the frozen evolution, 
the criterion for ignition to occur can be written as 
0M > 0/» and the ignition time is easily deter­
mined, in the limit /3 -» oo, from the frozen 
temperature distribution. When dM = 6„, the 
maximum temperature is reached asymptotically 
for large values of r. In this case it is possible to 
look for the critical conditions for ignition apply­
ing a quasi-steady treatment, that is, determining 
whether or not a balance can be attained between 
the heat release by the reaction and the heat 



transfer to the walls. The problem given by Eqs. 
11-13 with the time derivatives removed has been 
solved by Joulin [11]. For numerical work not 
relying on the Eddington approximation, see 
Khalil et al. [9, 10]. 

Another situation in which a modified form of 
the quasi-steady treatment of the thermal ignition 
is applicable will be considered here. It corres­
ponds to the realistic limit I > 1, in which the 
thermal capacity of the solid particles is much 
smaller than that of the gas, and includes in 
particular the case of near-stoichiometric mixtures 
of coal particles and air. In this case there are two 
stages in the frozen evolution of 6S. In the first 
stage [T = 0(1)], 0*(£, T) increases without any 
appreciable change in dg and tends to an asymp­
totic distribution with the maximum value at the 
center of the slab (£ = 0) if 6W < 1, or at the walls 
(|| | = X) if 6W > 1. In the second stage [r = 
0(1)], the gas temperature 0g(£, T) and the 
temperature of the particles change due to the 
radiative heat exchange with the walls. If 6W < 1, 
the temperatures of both phases decrease during 
this stage, and the maximum value at the end of the 
first stage can be identified with dM. In the 
opposite case, 6W > 1, both temperatures increase 
in the second stage toward the final common value 
dw, and the appropriate criticality analysis is that 
of Joulin [11]. 

CASE 1. |1 - 0W\ = 0(1) 

The particle temperature distribution at the end of 
the first stage is given by the solution of Eqs. 11 
and 12 without the time derivative term and with 6g 

= 1. The frozen distribution 0F(X) results when, 
in addition, the reaction term is removed from Eq. 
11. The maximum particle temperature obtained 
from this frozen solution is plotted in Fig. 1 as a 
function of 6W for several values of X and N. The 
frozen temperature near the center of the slab (£ « 
1) is BF « 0M - 02£

2, with 

d2 = (l-6M)/2(l + l2BM
2/N). 

In order to account for the effect of the chemical 
reaction, and to determine the critical conditions 

Fig. 1. Maximum value of 8F(£) as a function of 6W. The 
maximum is attained at the center of the slab for 6W < 1 
(continuous lines) and at the walls for 8„ > 1 (dashed lines). 



for ignition in the case 6W < 1, the variables 

_ 03/2Nd2
1/2 

1/2/1. 1/21 
v = 0i/202m£ (18) 

are introduced. Here <j>F is the nondimensional 
radiation flux in the absence of reaction, and r¡ is 
of order unity in the narrow region around the 
middle point where the temperature is higher and 
the reaction rate is appreciable. When the varia­
bles in Eq. 18 are carried to Eq. 12a, there results, 
in first approximation, 

dr]2 dr\ 
(19) 

reflecting the fact that the reaction region is 
optically thin. Equation 19 can be integrated once, 
and the integration constant vanishes, as can be 
seen from the matching with the outer reaction-
free region where £ = O(l). Using this result 
together with Eq. 18 in the simplified form of Eq. 
11, one obtains 

5 exp 
5-

6\ 
- 1+-

ASK 

N 
0 = 0 (20) 

where 5 = 0A exp[0(6M - l)/6M]. This is a 
Semenov-like problem, with ij playing the role of a 
parameter. The ignition occurs for 17 = 0, and the 
critical value of 5, which will be denoted by 5C, is 
given by 

8C = «--2 l+46M
3/N 

"M (21) 

where 6M in Eq. 21 and in the definition of 5 
should be taken from Fig. 1. 

It must be remarked that small changes in 
particle radius (see Eq. 7) and optical length 
should have been included in the determination of 
the critical conditions. In addition, the radial flux 
due to the burning modifies the particle-gas heat 
transfer rate, and the first term on the right-hand 
side of Eq. 2 should have been modified accord­
ingly. When accounting for such effects, new 
terms appear in the energy balance, Eq. 20; 

however, as can be easily verified, these terms are 
proportional to CpTg0/Q, which is a small num­
ber, CpTg0/Q « 0.13 at Tg0 = 1000 K, so it 
seems safe to neglect them. A second remark is 
that the rather strong assumption 1/0 > 1 has been 
made in order to neglect temperature changes in 
the gas up to the orders involved in the analysis. 
When this assumption is released, and the small 
terms commented on before are included, one is 
led to a transient ignition analysis. Results of this 
analysis will be presented elsewhere. (A limiting 
case is analyzed in Appendix A.) 

In the case 0W > 1, ignition can occur in the 
second stage, during the heating of the gas phase. 
However, as this is a slow process, it could be of 
interest to determine the critical conditions for 
ignition to occur in the first stage. The maximum 
particle temperature is attained in this case near 
the hot walls, and this is the place where the 
reaction is first appreciable. It turns out that the 
result of Eq. 21 is still valid, with the same 
remarks as before, but 6M must be replaced 
everywhere by the value obtained from the dashed 
part of the curves in Fig. 1. 

CASE 2. |1 — 0W\ = 0(1/0) 

In this case the reaction is important in the entire 
space between the walls, and a separate analysis is 
necessary. When looking for quasi-steady states 
and critical conditions, it is convenient to intro­
duce the variables 

9 = 13(9,-1), * = 0* (22) 

in Eqs. 11 and 12. Linearizing the exponent in the 
reaction term in Eq. 11, and also the fourth-power 
terms in Eqs. 12a and 12b, there results the 
simplified problem 
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dk 
d2* 4 dQ 
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where 

(26) 

Equation 23 represents a balance between the heat 
released by the chemical reaction and that transfer­
red by radiation between the particles and the 
walls, and by conduction between the particles and 
the gas. 

Asymptotic Limits 

Let us begin by considering the limit of the large 
conduction/radiation parameter (N > 1). In this 
case the radiation flux is small, $ = 0(l/N) and 
can be neglected in Eq. 23. The resulting Semenov 
problem leads to the critical Damkohler number Ac 

= l/e and to the uniform temperature 9 = 1 at 
criticality. Looking now for the small effect of the 
radiation flux, the result is the corrected condition 

*c=< 

i r , + _ 
e L (1 + 

8(i-ew)/jv 

(1 + 2/V3)e*+ (1 - l/4i)e-x\ 

for 9 W <1 

1 (" 4(Qw-l)(ex+e-*)/N 1 
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which is uniformly valid in X. Steady states exist 
for A < Ac, whereas for A > Ac vigorous burning 
is to be expected. 

In the opposite limit, N < 1 heat exchange with 
the gas becomes negligible, and one recovers the 
problem analyzed by Joulin [11], after an appro­
priate redefinition of the variables, which includes 
linearization around the wall temperature instead 
of the temperature of the gas. This can be seen best 
by using the new variables $ ' = N$, 9 ' = 9 -
6„„ and A' = A/A exp(9w), and then letting N -* 
0. 

For optically thin media, X < I, Eqs. 24 and 
25 lead to d$>/d% = 4(9 - 9W)/N, and when this 
is carried to Eq. 23 a Semenov-like problem 
results. The critical Damkohler number, including 

the second term in an expansion for small values of 
X, is given by 

exp[ -49 w / (4+A0] 

eN 

X 4 + 7V+ 
8 * / N9M 

( 
V3 \4 + N 

1 + o(X)\ (28) 

On the other hand, for optically thick media, X 
> 1, radiation is equivalent to heat conduction in 
most of the space. The resulting radiation flux is 
too small to appear in the energy balance (Eq. 23) 
in first approximation, and a Semenov problem 
results once again, which would lead to Ac = l/e. 
However, the resulting temperature field (given by 
9 = 1 at critical conditions), does not satisfy the 
boundary condition (Eq. 25), and narrow regions 
appear near the walls where the optically thick 
approximation can no longer be applied. In the 
narrow region near the left wall (the other is 
identical), the problem to be solved is given by 
Eqs. 23 and 24 subject to the boundary conditions 

d<S> 2 49 
— * = 

di V3 N 
£ = 0: 

£-•<»: 9 = 9outer, 

49^ 

" N 
(29) 

where £ is now measured from the wall. The 
second boundary condition comes from the match­
ing with the outer region; 9outer is the (smaller) 
root of A exp (9) — 9 = 0. Solutions for this 
inner problem cease to exist for A > A*(9W, N) 
< l/e, and when the inequality holds the critical 
Damkohler number is determined by the presence 
of the narrow regions. This is the case for Qw > 1, 
as will be shown later. 

Another distinguished limit in which the radia­
tion flux is important all over the domain, even 
though X > I, will be analyzed in Appendix B. 

General Solution and Discussion 

To obtain the solution of Eqs. 23-25 and the 
critical conditions for ignition in a general case, it 
is convenient to eliminate £ by using the fact that 
the differential equations 23 and 24 are autono­
mous. Equation 24 can be written in terms of * 



and 0 with the help of Eq. 23, and it takes the 
form 

4 \ dO 
( A e a - ^ A e e - ! - - ) - = *, 

which can be integrated to give 

4 V e - 2 ( 0 + - ) Aee 

+ ( i + - ) e 2 = $ 2 - / 4 , 

(30) 

(31) 

where A is a constant. At the center of the slab, the 
radiation flux $ is zero, due to the symmetry of the 
problem, and Eq. 31 can be used to relate A to the 
central temperature. Equation 31 has been plotted 
schematically in Fig. 2 for different (increasing) 
values of A. In the case A < l/e, a phase portrait 
looking like the mirror image of that plotted in 
Fig. 2 can also be obtained. In any case, there exist 
orbits with cusps at $ = 0 and the values of 0 
indicated in the caption to Fig.2 for well-defined 
values of A. 

The relation between $ and the temperature is 
given by 

d£ _Aee-l-4/N 
dO~ Í 

(32) 

with $(0) taken from Eq. 31. Equation 32 is the 
result of eliminating d2$/d¡;2 between Eq. 24 and 
the derivative of Eq. 23. 

The boundary condition Eq. 25 can also be 
transformed to 

A>1/e 

Fig. 2. Phase portrait for Eq. 30. The curves labeled with 
increasing numbers correspond to increasing values of A in Eq. 
31. For A > l/e the temperature at PI is ln[(4 + N)/NA]. 
For A < l /e the temperature at PI is the lower root of A 
exp(0) - 0 = 0; at P2 and P3 the temperatures are given by 
the upper root of this equation and the value ln[(4 + N)/Ná], 
but their order depends on the values of A and N. 

VI N/4 
(33) 

which has been specialized to the right wall. 0 e 

and # e are the unknown values of the particle 
temperature and radiation flux at the wall. 

The solution procedure is as follows: Fixed 
values are given to A, N, and Qw, and the 
temperature of the particles at the wall 0 e is used 
as a parameter. The flux # e is obtained from Eq. 
33, and the constant A then results from Eq. 31. 
This allows one to determine which of the possibil­

ities shown in Fig. 2 is actually relevant, and, in 
particular, the value(s) of the temperature at the 
center of the slab can be obtained by solving, 
iteratively, Eq. 31 with S> = 0. Finally, X results 
from Eq. 32 through a quadrature. Critical condi­
tions are defined as those leading to maxima or 
minima of the function X(Oe) thus determined. 
The critical Damkohler number as a function of X 
for several values of TV and two different values of 
0„, is plotted in Fig. 3. Solutions exist for A < 
AC(X, N, Qw). 

For Qw = 0 (Fig. 3a), the maximum tempera-



ture occurs at the center of the slab, and the critical 
conditions reflect the well-known fact that for a 
given X the heat released by the reaction can be 
evacuated steadily only if it is smaller than a 
critical value, which decreases when X increases. 
This is a general feature for Qw < 1. Sketches of 
the temperature and radiation flux under critical 
and subcritical conditions are given in Fig. 4a. 

The results for Qw = 2 (Fig. 3b) reflect a 
different behavior. At least on part of the curves, 
Ac increases with X and is smaller than l/e. The 
temperature in this range is minimum at the center 
of the slab, and the right-hand side of Eq. 23, 
which represents the combined effect of heat 
release by the reaction and heat exchange with the 
gas, is negative there, corresponding to an "effec­
tive" endothermic reaction. The effective heat 
release can become positive at some distance from 
the center, reaching a maximum value at the walls, 
where ignition will occur if the heat loss toward 

the center is high enough, that is, if A"" is small (see 
Fig. 4c). This may be an appropriate explanation 
for the rightmost part of the curves in Fig. 3b, 
when X is large enough or N small enough. 
However, for smaller values of X and larger 
values of N, the effective heat release, on the 
right-hand side of Eq. 23, is seen to be always 
negative (Fig. 4b). Even though such a system 
would clearly not present ignition if the heat were 
evacuated by the usual conduction, the situation 
changes when radiation is involved. Rewriting Eq. 
32 in the alternative form 

dO 
<f>=-(l+4/N-Aee) — , 

dk 

it can be seen [11] that in the present problem also 
the heat flux is proportional to the temperature 
gradient but the apparent conductivity depends 
strongly on the temperature and can be zero or 

Fig. 3. Critical Damkóhler number as a function of the thickness of the slab for several values 
of the conduction/radiation parameter. The curves are monotonic when 9W < 1 and can 
present a minimum when 9W > 1 if iV is sufficiently small. 
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Fig. 3. (Continued). 

negative. Small values of (1 + 4/N - AeG) are 
seen to occur near the walls. Let us consider the 
extreme case in which this is zero at some point 
between the plates; there, d^/di, = Aee(dQ/ 
d£)2 ^ 0, whereas d$/dl- < 0 is required in Eq. 
23. The need to avoid this paradox explains the 
presence of critical conditions for the existence of 
steady solutions even in this case. 

For N < 4, the function AC(X) plotted in Fig. 
3b decreases in a range of X. The temperature 
distribution corresponding to this range is similar 
to that of the case 9W = 0, presenting a maximum 
at the center of the slab (see Fig. 4a). This is a 
general feature for Gw > 1, the range of decreas­
ing Ac appearing for small values of X when N 
becomes smaller than 4/(9„, - 1), as can be 
inferred from the asymptotic expression, Eq. 28. 
When e = 4/(0w - I) - N < \, Has critical 
Damkóhler number AC(X) for X = ex, x = 
0(1), is given by the expansion 

where 

Ac = Ao + e2A2 + (34) 

Ao = 
Qw 

exp Ow 

ew+i\ 

A2 = ( 6 > v - l ) 2 

exp 9M 

26w
2 (35) 

The temperature distribution at critical conditions 
takes the form 

e = 0 M , + e e 1 + e 2 e 2 + - - - ) 

where 

9W -1 \lx I 

_ e ^ ( W - i + c 

ew-i i 

(36) 

(37) 

The minimum value of Ac is attained for x = 
V5(0H, - l) /2. Note that the parabolic tempera-



ture distribution changes from convex to concave 
when x crosses the value corresponding to the 
minimum. The constant C in Eq. 37 is a compli­
cated expression that does not depend on £. 

The range of values of X on which AC(X) 
decreases widens when TV decreases, in agreement 

(») 

(b) 

(c) 

w a l l 

w a l l 

- x w a l l 

Fig. 4. Sketches of the temperature and radiation flux profiles 
at critical conditions (solid lines) and slightly subcritical 
conditions (dashed lines), (a) The maximum temperature 
appears at the center and develops a cusp there under critical 
conditions, (b) Wholly endothermic "effective" reaction, (c) 
Reaction effectively endothermic near the center and exother­
mic near the wall. In both cases (b) and (c) the temperature 
slope is infinite at the wall under critical conditions. 

with what should be expected from the asymptotic 
behavior for TV < 1. (See Ref. 11.) 

Solution for an Infinite Domain 

Finally, let us come back to the solution of the 
problem presented by Eqs. 23, 24, and 29, which 
provides, in particular, the values of the asymp­
totes of the curves in Fig. 3 for X -* oo. The 
procedure applied for finite values of X can also 
be used now with minor changes. For given values 
of A and TV, the constant A results from Eq. 31 
particularized at infinity, where $ = 0 and 9 is 
given by the second boundary condition, Eq. 29. 
This temperature corresponds to the point PI in 
Fig. 2b and leads to a divergent integral in Eq. 32, 
as it should. Applying Eq. 31 at the wall, the 
radiation heat flux there can be obtained as a 
function of the local particle temperature Qe, 
which will be taken as a parameter, in the same 
way as before. Finally the wall temperature Qw as 
a function of Qe results from the first boundary 
condition, Eq. 29. This function presents a maxi­
mum, corresponding to critical conditions, which 
has been plotted versus A for several values of TV 
in Fig. 5. As was mentioned before, the critical 
value of A for 0W < 1 is l/e, resulting from the 
outer (Semenov) problem, whereas for Qw > 1 the 
critical conditions are determined by the regions 
near the walls, where the reaction is enhanced by 
the higher temperature. 

For large values of TV the radiation flux is small, 
and the critical Damkohler number never differs 
too much from the radiation-free value l/e. For 
small values of TV, the regions near the walls 
where the temperature decays become optically 
thick and the radiation behaves formally as ther­
mal conduction. Both limiting cases are repre­
sented by dashed lines in Fig. 5. 

CONCLUSIONS 

An analysis has been carried out on the heteroge­
neous ignition of a coal dust cloud in air that 
accounts for heat conduction between the coal 
particles and the gas and radiative transfer be­
tween the particles. A large value of the gas/ 
particles thermal capacity ratio is considered, 
leading to a slow increase in the gas temperature 
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Fig. 5. Critical Damkohler number for a half-space bounded by a constant-temperature wall. 
Ignition occurs far from the wall when its temperature is smaller than that corresponding to 
critical conditions for an unbounded space (Gw = 1 ) and near the walls when its temperature is 
larger. 

compared with the fast increase in the temperature 
of the particles, which adjusts itself to the condi­
tions imposed by the gas and the walls. 

When the temperature of the walls is lower than 
the initial temperature of the gas, the critical 
conditions for ignition are attained by the end of 
the particle heating, and the gas temperature has 
no time to change. In the ignition regime the heat 
released by the chemical reaction is appreciable 
only in a narrow optically thin region in the center 
of the cloud, where the temperature is maximum. 
The results presented correspond to very large 
values of the gas/particles thermal capacity ratio, 
when the temperature of the gas can be assumed to 
be constant even during the ignition process. 

When the temperature of the walls is higher than 
the initial temperature of the gas, critical condi­
tions for ignition occur by the end of the chemi­
cally frozen heating stage, when both temperatures 
are close to the wall temperature. 

Special attention is paid to the case in which the 
temperatures of the gas and the walls bounding the 
system are close to each other, with the tempera­
ture difference on the order of Tg0

2/Ta. In this 
case the following results are obtained. 

For large values of the conduction/radiation 

parameter the effect of the radiation can be 
neglected in the first approximation. Conduction 
between the particles and the gas is the only energy 
transfer mechanism left, and the classical Se-
menov ignition problem is recovered. In the 
opposite limit, N < I, radiation transfer domi­
nates over heat conduction. The temperature 
difference between the particles and the gas 
becomes unimportant, and the result is the prob­
lem analyzed by Joulin [11]. 

In between, for N = O(l), ignition conditions 
depend on the temperature of the walls. If the 
walls are cold, that is, the wall temperature is 
lower than that corresponding to ignition in the 
homogeneous radiation-free case, the maximum 
heat release occurs at the middle of the cloud and a 
steady state with incipient chemical reaction exists 
only for small systems, with strong radiative 
losses toward the cold walls. For hot walls, the 
possibility arises of having a maximum particle 
temperature and maximum heat release near the 
walls; in this case ignition occurs for small 
systems, when the heat losses toward the center of 
the cloud become small or, which seems to be 
peculiar to radiative heat transfer, when the 
"apparent" conductivity vanishes at the walls. 



This behavior coexists with the behavior com­
mented on earlier for cold walls if the conduction/ 
radiation parameter is smaller than a well-defined 
value, which depends on the wall temperature. 

Asymptotic results are presented for both opti­
cally thin and optically thick media. From the 
results corresponding to optically thick media it 
can be seen that the limits N -» 0 and X -* oo do 
not commute. 
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APPENDIX A 

In this appendix we analyze the critical ignition 
transients in the realistic case of the gas/particles 
thermal capacity ratio, / , of order /3 (/ = nff) in 
the limit of optically thin media, X < 1. The 
corresponding nondimensional equations take the 
form 

r'~ = r(6g-6s) 
K 

dr - - ( 0 * 4 - 0 w 4 ) 
1 N 

d(pdg) K 

dr eK-\ 

dp CpTm 
I~ = — — Ar2vsexp 

or Q m 
(A.l) 

(A.2) 

(A.3) 

dr 3Yt 

4 CPT™ ,_,. . VW'-W Ar2ys exp 
«o B, 

(A.4) 

Cp dr CpTm 
3 — r —= — - — Ar2Vc 

Q dr Q 

Xexp [^]-' (A.5) 

L e * r i + (3r,o/4).r ,1 m"RCp 

(A.6) 

where 

ys = Y J Yg0, yg=Yg/ Yg0, r=R/R0 

Lc = kg/pg0CpDg, p = pg/pgo- (A.7) 

All other parameters appearing in Eqs. A.1-A.6 
are exactly the same as defined in the main text but 
with Tg0 replaced by Tm, which is the equilibrium 
frozen temperature, given by the solution of the 
equation kg{Tg0 - Tm) = a(Tm

4 - TW*)R0. 
Equations A.1-A.6 have to be solved with the 
initial conditions 6S = 8s0, 6g = 6g0, r = p = yg 

= 1. For f -* - oo, the solution for the first step 



(the frozen stage) is given up to terms of order 1//3 
by 

^l+I[c„exP[-(l+i)f] 
0gO - 1 £>, + (0fO - l ) /n (1 + 4/N) 

n(l+4/N) 

n(\+4/N)T j 

1+4/iV 

(A.8) 

Og=0go + -

r (8g0-i)T* (^o- i ) f i 

(A.9) 

where 

T=T-T*, T* = 
ln/3 

1+4/N 

C0 = CQ(N, n, 8W, 0SQ), 

D1=Dl{N,n,ew,es0) (A. 10) 

The constants C0 and £>i can be obtained numeri­
cally by solving the problem in the frozen stage. In 
order to analyze the reactive stage, we introduce 
the following expansions: 

a , tf. 1 . C,T„n& ( 1 \ 
6S=1+ — + - l n +o — 

/3 jí 3G V/3V 

-a) 
r= l+—+ 

0 
P = l + 0(l/j82) yg=\ + O(l/02) (A. 11) 

where 5 = 0A represents the appropriate 
Damkohler number. Introducing the relationships 
A. 11 into Eq. A.l and its time derivative, and 
eliminating the terms involving other dependent 
variables through the use of Eqs. A.2-A.6, we 

obtain 

d^s 
, + 0 4 - 0 ? ^ ) — - ^ + 1 = 0 

as2 ds 
(A. 12) 

where 

A = 

C= 

(l + 4/N)ni/2 

(eg0-i)
yl ' 

3CpQ/CpTm-(l-6w*)/2N 

Cs nl/2{l-6wy» 
Nin, (A. 13) 

and 

;= / r. 

Equation A. 12 is autonomous and can be 
rewritten as 

d4>_u-l-(A-Cu)<t> 
dü 

with 

<t> = 
ds 

u4> 

u = e*° 

(A. 14) 

(A. 15) 

For large negative values of the nondimensional 
time s -* - oo, which correspond to u < 1, <j> > 
0, the solution of A. 14 is given, in first approxi­
mation, by 

ue <I>/A 

(l+A<t>)1/A2 
; = K (A. 16) 

where K = K(A, C). In the phase-space (u, <f>) 
there is only one trajectory that reaches the saddle 
point (u, <j>) = (1, 0), which matches with the 
frozen solution. This trajectory is associated with a 
critical value Kc of the parameter K. For values K 
> Kc (supercritical behavior), the trajectory 
reaches asymptotically <j> * Cu with («, </>) > 1. 
For K < Kc (subcritical behavior), the trajectory 
ends in the nodal point (w, <t>) = (0, - 1/A), 
which defines the quasi-steady slow-burning re-



gime. Matching with the frozen stage requires that APPENDIX B 

Kc= 
CsTm 

3Q 

ndcexp[D¡/(l+4/N)] 

[0(6* - ! ) / « ( ! + 4/N)](-C0A)"A 2 ' 

(A. 17) 

which relates the critical value of K with the 
critical Damkohler number 8C. Figures A.1-A.3 
show the results obtained with different represent­
ative parameter sets. The characteristic behavior 
displayed at the right in the figures is associated 
with the condition Ts0 = Tm; the initial tempera­
ture of the particles becomes the same as the 
equilibrium temperature. 

In this appendix a more detailed analysis is given 
for the limiting case of optically thick slabs (X > 
1) and small conduction/radiation parameter (N < 
1), in such a way that A = y¡ÑX/2 = 0(1). 

Equations 23-25 can be simplified to 

j_d20 
T2~dp -=-Aee + e 

de 
f -0: - - 0 ; f=i: e=e„ 

(B.l) 

(B.2) 

where f = £ / X Here the second derivative term 
in Eq. 24 and the terms proportional to the 
radiation flux $ in the boundary condition of Eq. 
25 have been neglected. Equation B.l can be 
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Fig. A.l. Critical conditions for ignition for N = 0.5, 8W = TJTl0 = 0.5 (Tm/Ti0 

0.685) and various values of n. 
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Fig. A.2. Critical conditions for ignition for N = 1, ew = Tw/Tg0 = 0.5 (Tm/Tg0 = 0.749) 
and various values of n. 

rewritten in the form 

1 dQ 
= P 

A rff 

P2 + 2Aee - 9 2 - 2A<?eo + 9 0
2 = 0 

(B.3) 

(B.4) 

showing the phase-plane structure of Fig. B.l. 
If A is larger than the Semenov critical value 1/ 

e for the particles in the radiation-free case, a 
typical trajectory in the phase plane begins at p = 
0, 9 = 9 0 > 9„, and ends at a negative value p\ of 
p at 9 = 9W. The nondimensional size A of the 
slab is given in terms of 9 0 by 

A = i 
Je... 

de 
ew [2A(eeo- ee) + 9 2 - 9 0

2 ] m (B.5) 

and 9 o - * o°, so that A has a maximum Ac at some 
intermediate value of 90 . Two solutions exist, 
therefore, for A > \/e, with higher temperatures 
in the center of the slab than at the wall if A < 
AC(A, 9W). There are no solutions with particle 
temperatures 9 < 9*. 

If A < l/e, a number of possibilities arise 
depending on the relative values of 9W and the 
temperatures 9* > 9 + > 9_ . Here 9* is the 
maximum value of 9 in the phase-plane trajectory 
that goes through 9 _ . 9* satisfies the equation 

2A(<? e *-<? e - ) - (9 2 -9_ 2 ) = 0 (B.6) 

while 9+ and 9_ are the two roots of 

A<?e-9 = 0 (B.7) 

This leads to the limit A -> 0 for both 9 0 -» 9W 

If Qw > 9*, the only type of solutions that exist 
are those shown in Fig. B.2a, similar to the ones of 
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Fig. A.3. Critical conditions for ignition for TV = 2, 9„ = Tw/Tg0 = 0.5 (Tm/Tg0 = 0.84) 
and various values of n. 

Fig. B. 1. Phase portraits for Eqs. B.3 and B.4 for two values of A, larger and smaller than 1/ 
e. The arrows in the second plot show the two kinds of phase trajectories possible for a value 



Fig. B.2. Temperature at the center of the slab as a function of A"2 for A = 0.3 and several 
values of 9 „ in the different ranges (a) 8* < 9„ ; (b) 0 + < G„ < 9*; (c) 9_ < 9W < 9 + ; 
(d)G„ < 9_ . 

trajectories in the phase plane lie in the domain 9 . 
< 0 < 0W bounded by those originating at 0_ 
and Qw. The solution associated with 0_ corres­
ponds to infinite A. Some examples of both kinds 
of solutions for 0 + < Qw < 0* are shown in Fig. 
B.2b. 

If 0_ < Qw < 0 + , solutions withp > 0 and 
0_ < 0 < 0H, exist for all values of A, while the 
solutions with p < 0 are restricted to values of 0O 

> Qw, where 0W is the upper root of Eq. A.8. The 
relation between A and 0O is of the type shown in 
Fig. B.2c. 

Finally, for 0W < 0 _ , two types of solutions 
exist with p < 0, corresponding to Qw < 0O < 
0_ and 0O > 0*, and there are no solutions with 
0O in the intermediate range; see Fig. B.2d. 

the case A > 1/e; they exist for A < AC(A, 9^). 
On the other hand, if 0 + < 0W < 0*, then, 
besides the old type of solutions with/7 < 0 and 0 
> 9W, a new type of solutions, with p > 0, 
exists, with the phase-plane trajectories shown on 
the right in Fig. B. lb. In these new solutions, 0 < 
0H, everywhere. The particle temperature 0O at the 
center of the slab is 0_ < 0O < ©„,, where &w < 
Qw is the middle root of the equation 

2A(<? s ») - (0V_ 9 w 2 ) = o (B.8) 

The particles receive heat by radiation in the 
center of the slab and lose it close to the walls. 
These solutions exist only for A larger than a 
minimum value AminCA, 0W) ^ A/(A, 0W), where 
A/ is the length associated with 0O = &w. The 


