
2,3

Reduced Certificates for
Abstraction-Carrying Code

Elvira Albert1 , Pur i Arenas1 , Germán Puebla 2 , and Manuel Hermenegildo

1 Complutense University of Madrid, {elvira,puri}@sip.ucm.es
2 Technical University of Madrid, {german,herme}@f i.upm.es

3 University of New México, hermeOunm. edu

Abs t r ac t . Abstraction-Carrying Code (ACC) has recently been pro-
posed as a framework for mobile code safety in which the code supplier
provides a program together with an abstraction whose validity entails
compliance with a predefined safety policy. The abstraction plays thus
the role of safety certifícate and its generation is carried out automat-
ically by a fixed-point analyzer. The advantage of providing a (fixed-
point) abstraction to the code consumer is that its validity is checked in
a single pass of an abstract interpretation-based checker. A main chal­
lenge is to reduce the size of certificates as much as possible while at
the same time not increasing checking time. We introduce the notion
of reduced certifícate which characterizes the subset of the abstraction
which a checker needs in order to validate (and re-construct) the full
certifícate in a single pass. Based on this notion, we instrument a generic
analysis algorithm with the necessary extensions in order to identify the
information relevant to the checker. We also provide a correct checking
algorithm together with sufficient conditions for ensuring its complete-
ness. The experimental results within the CiaoPP system show that our
proposal is able to greatly reduce the size of certificates in practice.

1 Introduction

Proof-Carrying Code (PCC) [16] is a general framework for mobile code safety
which proposes to associate safety information in the form of a certifícate to
programs. The certiñcate (or proof) is created at compile t ime by the certifier
on the code supplier side, and it is packaged along with the code. The consumer
which receives or downloads the (untrusted) code+certiñcate package can then
run a checker which by an efficient inspection of the code and the certiñcate can
verify the validity of the certiñcate and thus compliance with the safety policy.
The key beneñt of this approach is tha t the task of the consumer is reduced
to checking, a procedure tha t should be much simpler, efficient, and automatic

http://ucm.es
http://upm.es

than generating the original certiñcate. Abstraction-Carrying Code (ACC) [2]
has been recently proposed as an enabling technology for PCC in which an
abstraction (or abstract model of the program) plays the role of certiñcate. An
important feature of ACC is that not only the checking, but also the generation of
the abstraction is carried out automatically, by a ñxed-point analyzer. Both the
analysis and checking algorithms are always parametric on the abstract domain,
with the resulting genericity. This allows proving a wide variety of properties by
using the large set of abstract domains that are available, well understood, and
with already developed proofs for the correctness of the corresponding abstract
operations. This is one of the fundamental advantages of ACC.4

In this paper, we consider analyzers which construct a program analysis graph
which is an abstraction of the (possibly infinite) set of states explored by the
concrete execution. To capture the different graph traversal strategies used in
different fixed-point algorithms we use the generic description of [10], which
generalizes the algorithms used in state-of-the-art analysis engines. Essentially,
the certification/analysis carried out by the supplier is an iterative process which
repeatedly traverses the analysis graph until a fixpoint is reached. The analysis
information inferred for each cali is stored in the answer table [10]. In the original
ACC framework, the final full answer table constitutes the certifícate. Since this
certiñcate contains the fixpoint, a single pass over the analysis graph is sufficient
to validate it on the consumer side. It should be noted that while the ACC
framework and our work here are applied at the source-level, and in existing PCC
frameworks the code supplier typically packages the certifícate with the ohject
code rather than with the source code (both are untrusted), this is without loss
of generality because both the ideas in the ACC approach and in our current
proposal can also be applied to bytecode.

One of the main challenges for the practical uptake of ACC (and related
methods) is to produce certiñcates which are reasonably small. This is important
since the certiñcate is transmitted together with the untrusted code and, henee,
reducing its size will presumably contribute to a smaller transmission time. Also,
this reduces the storage cost for the certifícate. Nevertheless, a main concern
when reducing the size of the certiñcate is that checking time is not increased as
a consequence. In principie, the consumer could use an analyzer for the purpose of
generating the whole ñxpoint from scratch, which is still feasible since analysis is
automatic. However, this would defeat one of the main purposes of ACC, which
is to reduce checking time. The objective of this paper is to characterize the
smallest subset of the abstraction which must be sent within a certiñcate -and
which still guarantees a single pass checking process- and to design an ACC
scheme which generates and validates such reduced certiñcates.

4 The coexistence of several abstract domains in our framework is somewhat related to
the notion of models to capture the security-relevant properties of code, as addressed
in the work on Model-Carrying Code [22].However, their combination has not been
studied which differs from our idea of using combinations of (high-level) abstract
domains, which is already well understood.

Fixpoint compression is being used in different contexts and tools. For in-
stance, in the Astrée analyzer [8], only one abstract element by head of loop is
kept for memory usage purposes. In the PCC scheme, the basic idea in order to
compress a certiñcate is to store only the analysis information which the checker
is not able to reproduce by itself [12]. With this purpose, Necula and Lee [17]
designed a variant of LF, called LF¿, in which certiñcates discard all the infor­
mation that is redundant or that can be easily synthesized. Also, Oracle-based
PCC [18] aims at minimizing the size of certiñcates by providing the checker with
the minimal information it requires to perform a proof. Tactic-based PCC [3]
aims at minimizing the size of certiñcates by relying on large reasoning steps,
or tactics, that are understood by the checker. Finally, this general idea has
also been deployed in lightweight bytecode veriñcation [20] where the certiñcate,
rather than being the whole set of frame types (FT) associated to each program
point is reduced by omitting those (local) program point FTs which correspond
to instructions without branching and which are lesser than the ñnal FT (fix­
point). Our proposal for ACC is at the same time more general (because of the
parametricity of the ACC approach) and carries the reduction further because it
includes only in the certifícate those calis in the analysis graph (including both
branching an non branching instructions) required by the checker to re-generate
the certiñcate in one pass.

2 A General View of Abstract ion-Carrying Code

We assume the reader is familiar with abstract interpretation (see [7]) and (Con-
straint) Logic Programming (C)LP (see, e.g., [14] and [13]). A certiñer is a
function certifier : Prog x ADom x AInt i—> ACert which for a given program
P £ Prog, an abstract domain Da £ ADom and a safety policy Ia £ AInt
generates a certiñcate Certa £ ACert, by using an abstract interpreter for Da,
which entails that P satisñes Ia. In the following, we denote that Ia and Certa

are speciñcations given as abstract semantic valúes of Da by using the same a.
The basics for deñning such certiñers (and their corresponding checkers) in ACC
are summarized in the following six points and Equations:

Approximation. We consider an abstract domain (Da, C) and its corresponding
concrete domain (2D, C), both with a complete lattice structure. Abstract valúes
and sets of concrete valúes are related by an abstraction function a : 2D —> Da,
and a concretization function 7 : Da —> 2D. An abstract valué y £ Da is a
safe approximation of a concrete valué x £ D iff x £ 7(3/). The concrete and
abstract domains must be related in such a way that the following holds [7]
\/x £ 2D : j(a(x)) D x and \/y £ Da : a(j(y)) = y. In general IZ is induced
by C and a. Similarly, the operations of least upper bound (U) and greatest lower
bound (n) mimic those of 2D in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (monotonic)
semantic operator, Sp, is associated to each program P. The meaning of the
program, |P]], is deñned as the least ñxed point of the Sp operator, Le., [[P]] =
lfp(S'p). If Sp is continuous, the least ñxed point is the limit of an iterative

process involving at most ui applications of Sp starting from the bottom element
of the lattice. Using abstract interpretation, we can usually only compute |[P]]a,
as [[P]]a = lfp(Sp). The operator Sp is the abstract counterpart of Sp.

analyzer(P,DQ)=lfp(^) = [P] Q (1)

Correctness of analysis ensures that [[P] <G 7([-P]a)-

Verification Condition. Let Certa be a safe approximation of P . If an ab­
stract safety speciñcation Ia can be proved w.r.t. Certa, then P satisñes the
safety policy and Certa is a valid certiñcate:

Certa is a valid certifícate for P w.r.t. Ia if Certa E la (2)

Certifier. Together, equations (1) and (2) deñne a certiñer which provides pro­
gram ñxpoints, |[P]|a, as certiñcates which entail a given safety policy, i.e., by
taking Certa = [P] a .

Checking. A checker is a function checker: Prog x ADom x ACert i—> bool which
for a program P <G Prog, an abstract domain Da € ADom and a certiñcate
Certa S ACert checks whether Certa is a ñxpoint of Sp or not:

checker(P, Da, Certa) returns true iff (Sp(Certa) = Certa) (3)

Verification Condition Regeneration. To retain the safety guarantees, the
consumer must regenérate a trustworthy verification condition -Equation 2- and
use the incoming certifícate to test for adherence of the safety policy.

P is trusted iff Certa E la (4)

A fundamental idea in ACC is that, while analysis -equation (1)- is an iterative
process, checking -equation (3)- is guaranteed to be done in a single pass over
the abstraction.

3 Generation of Certiñcates in ACC

This section recalls ACC and the notion of full certiñcate in the context of (C)LP
[2]. For concreteness, we build on the algorithms of CiaoPP [9].

Algorithm 1 has been presented in [10] as a generic description of a fixed-
point algorithm which generalizes those used in state-of-the-art analysis engines,
such as the one in CiaoPP [9]. In order to analyze a program, traditional (goal de-
pendent) abstract interpreters for (C)LP programs receive as input, in addition
to the program P and the abstract domain Da, a set Sa € A Atora of Abstract
Atoms (or cali patterns). Such cali patterns are pairs of the form A : CP where
A is a procedure descriptor and CP is an abstract substitution (i.e., a condition
of the run-time bindings) of A expressed as CP <G Da. For brevity, we sometimes
omit the subscript a in the algorithms. The analyzer of Algorithm 1 constructs
an and-or graph [4] (or analysis graph) for Sa which is an abstraction of the
(possibly infinite) set of (possibly infinite) execution paths (and-or trees) ex-
plored by the concrete execution of initial the calis described by Sa in P . The

A l g o r i t h m 1 Generic Analyzer for Abstraction-Carrying Code

1: function ANALYZE_F(S, Q)
2
3
4
5
6
7
8

9
10:
11:
12:
13:

14:
15:
16:
17:
18:
19:
20:
21:
22:

23:
24:
25:
26:

27:
28:
29:
30:

for A : CP € S do
add_event(raewcaii(A : CP), Q)

while E := next_event(J?) do
if E := newcall(A : CP) then new_call_pattern(A : CP, Q)
else if E := updated(A : CP) then add_dependent_rules(A : CP, Q)
else if E := arc(R) then process_arc(i?, J?)

return answer table
procedure NEW_CALL_PATTERN(A : CP, Q)

for all rule Ak : -Bk,i, • • •, Bk¡nk do
CP0 :=Aextend(CP,vars(.. .,Bk,i, • • •)); CPX := Arestrict(CP0, vars(BkA))
add.event(arc(Ak : CP => [CP0]Bk¡1 : CPi),í2)

add A : CP t-^ _L to answer table

procedure PROCESS_ARC(_fffc : CP0 =^ [CPi] Bk,i • CP2,f¿)
if Bk,i is not a constraint then

add Hk : CPQ =^> [CPi] Bk,i '• CP2 to dependency are table
W :=vars(Ak,BkA,...,Bk,n'k); CP3 := get.answer(Bfc,¿ : CP2,CPUW,Í2)
if CP3 =/= _L and i =/= nk then

CP4, := Arestrict(CP3,vars(Bk}i+i));
add_event(arc(Hk : CP0 => [CP3] Bk¡i+1 : CP4),Í2)

else if CP3 7̂ _L and i = nk then
AP\ := Arestrict(CP3, vars(Hk)); insert_answer_info(ií : CPQ H^ AP\, Q)

function GET_ANSWER(L : CP2, CP\, W, Q)
if L is a constraint then return Aadd(L, CPi)
else AP0 := lookup_answer(L : CP2,Ü); AP\ := Aextend(AP0,W)

return Aconj(CPi, APi)

function LOOKUP_ANSWER(A : CP, Q)
if there exists a renaming a s.t.cr(A : CP) t-^ AP in answer table then

return a~1(AP)
else add_event(newcall(<j (A : CP)), Q) where a is renaming s.t. a (A) in base

form; return _L

31: procedure INSERT_ANSWER_INFO(_ff : CP i-> AP, Q)
32: AP0 := lookup.answer(ií : CP); AP! := A\ub(AP,AP0)
33: if AP0 ^ AP! then
34: add (H : CP ^ APi) to answer table ;
35: add-event(updated(H : CP), Q)

36: p rocedure ADD_DEPENDENT_RULES(A : CP, Q)
37: for all are of the form Hk : CPQ => [CPi] Bk,i '• CP2 in graph where there

exists renaming a s.t. A : CP = (Bk,i '• CP2)a do
38: add_event(arc(iífc : CP0 => [CPi] Bk¡i : CP2), Í2)

program analysis graph is implicitly represented in the algorithm by means of
two global da ta structures, the answer table and the dependency are table, both
initially empty.

— The answer table contains entries of the form A : CP 1—> AP where A is
always form.5 Informally, its entries should be interpreted as "the

6 Program rules are assumed to be normalized: only distinct variables are allowed
to occur as arguments to atoms. Furthermore, we require that each rule defining

answer pattern for calis to A satisfying precondition (or cali pattern) CP
meets postcondition (or answer pattern), AP."

— A dependency are is of the form Hk : CPo =>• \CP\\ Bk,i : CP2. This is
interpreted as follows: if the rule with Hk as head is called with description
CPo then this causes the i-th literal Bk¿ to be called with description CP2.
The remaining part CP\ is the program annotation just before Bk¿ is reached
and contains information about all variables in rule k.

Intuitively, the analysis algorithm is a graph traversal algorithm which places
entries in the answer table and dependency are table as new nodes and ares
in the program analysis graph are encountered. To capture the different graph
traversal strategies used in different ñxed-point algorithms, a prioritized event
queue is used. We use Q <G QHS to refer to a Queue Handling Strategy which a
particular instance of the generic algorithm may use. Events are of three forms:

— newcall(A : CP) which indicates that a new cali pattern for literal A with
description CP has been encountered.

— arc(Hk :_=>[_] Bk¿ '• -) which indicates that the rule with Hk as head needs
to be (re)computed from the position k,i.

— updated(A : CP) which indicates that the answer description to cali pattern
A with description CP has been changed.

The functions adcLevent and next_event respectively push an event to the priority
queue and pop the event of highest priority, according to Q. The algorithm is
deñned in terms of four abstract operations on the domain Da:

— Arestr¡ct(CP,V) performs the abstract restriction of a description CPto the
set of variables in the set V, denoted vars(V);

— Aextend (CP,V) extends the description CPto the variables in the set V]
— Aadd(C, CP) performs the abstract operation of conjoining the actual con­

straint C with the description CP;
— Aconj(CPi, CP2) performs the abstract conjunction of two descriptions;
— Alub(CPi, CP2) performs the abstract disjunction of two descriptions.

More details on the algorithm can be found in [10,19]. Let us briefly explain its
main procedures. The algorithm centers around the processing of events on the
priority queue, which repeatedly removes the highest priority event (Line 4) and
calis the appropriate event-handling function (L5-7). The function new_call_pat-
tern initiates processing of all the rules for the deñnition of the internal literal A,
by adding are events for each of the ñrst literals of these rules (L12). Initially, the
answer for the cali pattern is set to ± (L13). The procedure process_arc performs
the core of the analysis. It performs a single step of the left-to-right traversal
of a rule body. If the literal Bk¿ is not a constraint (L15), the are is added to
the dependency are table (L16). Atoms are processed by function get_answer.

a predícate p has identical sequence of variables xvi,.. .xPn in the head atom, i.e.,
p(xpi,... xPn). We cali this the base form oí p.

Constraints are simply added to the current description (L24). In the case of
literals, the function lookup_answer ñrst looks up an answer for the given cali
pattern in the answer table (L28) and if it is not found, it places a newcall
event (L30). When it ñnds one, then this answer is extended to the variables in
the rule the literal occurs in (L25) and conjoined with the current description
(L26). The resulting answer (L17) is either used to genérate a new are event to
process the next literal in the rule, if B¡.i is not the last one (L18); otherwise, the
new answer is computed by ¡nsert_answer_¡nfo. This is the part of the algorithm
more relevant to the generation of reduced certiñeates. The new answer for the
rule is combined with the current answer in the table (L32). If the ñxpoint for
such cali has not been reached, then the answer table entry is updated with the
combined answer (L34) and an updated event is added to the queue (L35). The
purpose of such an update is that the function add_dependent_rules (re)processes
those calis which depend on the cali pattern A : CP whose answer has been
updated (L37). This effect is achieved by adding the are events for each of its
dependencies (L38). Note that dependeney ares are used for efficieney: they allow
us to start the reprocessing of a rule from the body atom which actually needs
to be recomputed due to an update rather than from the leftmost atom.

The following deñnition corresponds to the essential idea in the ACC frame-
work -equations (1) and (2)- of using a static analyzer to genérate the certiñ­
eates. The analyzer corresponds to Algorithm 1 and the certiñcate is the full
answer table.

Definition 1 (full certifícate). We define function CERTIFIER_F :ProgxADom
x A Atom x AInt x QHS i—> ACert which takes P <G Prog, Da <G ADom, Sa <G
AAtom, Ia <G AInt, Q <G QHS and returns as full certifícate, FCert <G ACert,
the answer table computed, by ANALYZE_F(S'a, Í2) for P in Da ¿/FCert IZ Ia.

4 Abstraction-Carrying Code with Reduced Certiñeates

The key observation in order to reduce the size of certiñeates is that certain
entries in a certiñcate may be irrelevant, in the sense that the checker is able
to reproduce them by itself in a single pass. The notion of relevance is directly
related to the idea of recomputation in the program analysis graph. Intuitively,
given an entry in the answer table A : CP i—> AP, its ñxpoint may have been
computed in several iterations from ±, APo, AP\,... until AP. For each change
in the answer, an event updated (A : CP) is generated during the analysis. The
above entry is relevant in a certiñcate (under some strategy) when its updates
forcé the recomputation of other ares in the graph which depend on A : CP
(Le., there is a dependeney from it in the table). Thus, unless A : CP i—> AP is
included in the (reduced) certiñcate, a single-pass checker which uses the same
strategy as the code producer will not be able to validate the certiñcate.

4.1 The Notion of Reduced Certifícate

According to the above intuition, we are interested in determining when an entry
in the answer table has been "updated" during the analysis and such changes

affect other entries. However, there are two special types of updated events which
can be considered "irrelevant". The ñrst one is called a redundant update and
corresponds to the kind of updates which forcé a redundant computation. We
write DAT\A-.CP to denote the set of ares of the form H : CP0 => [CP^B : CP2

in the current dependeney are table such tha t they depend on A : CP with
A : CP = (B : CPz)a for some renaming a.

Def in i t ion 2 (redundant u p d a t e) . Let P <G Prog, Sa <G AAtom and Í2 <G
QHS. We say that an event updated .̂A : CP) which appears in the event queue
during the analysis of P for Sa is redundant w. r. t. Í2 if when it is generated,
DAT\A..CP=%.

In the following section we propose a slight modiñeation to the analysis algorithm
in which redundant updates are never introduced in the priority queue, and thus
they never enforce redundant recomputation. The proof of correetness for this
modiñeation can be found in [1].

The second type of updates which can be considered irrelevant are initial
updates which, under certain circumstances, are generated in the ñrst pass over
an are. In particular, we do not take into account updated events which are
generated when the answer table contains ± for the updated entry. Note tha t
this case still corresponds to the ñrst traversal of any are and should not be
considered as a reprocessing.

Def in i t ion 3 (init ial u p d a t e) . In the conditions of Def. 2, we say that an
event updated (A : CP) which appears in the event queue during the analysis
of P for Sa is initial for Í2 if, when it is generated, the answer table contains
A:CP^ ±.

Initial updates do not oceur in certain very optimized algorithms, like the one
in [19]. However, they are necessary in order to model generic graph traversal
strategies. In particular, they are intended to resume ares whose evaluation has
been suspended,.

Def in i t ion 4 (relevant u p d a t e) . In the conditions of Def. 2, we say that an
event updated (A : CP) is relevant iff it is not initial ñor redundant.

The key idea is tha t those answer pat terns whose computation has introduced
relevant updates should be available in the certiñeate.

Def in i t ion 5 (relevant e n t r y) . In the conditions of Def. 2 we say that the
entry A : CP i—> AP in the answer table is relevant for Í2 iff there has been at
least one relevant event updated (A : CP) during the analysis of P for Sa.

The notion of reduced certifícate allows us to remove irrelevant entries from the
answer table and produce a smaller certiñeate which can still be validated in one
pass.

Def in i t ion 6 (reduced cert i f ícate) . In the conditions of Def 2, let FCert =
ANALYZE.FfSc, Í2) for P and Sa. We define the reduced certifícate, RCert, as
the set of relevant entries in FCert for Í2.

Example 1. Consider the Ciao versión of procedure rec toy , taken from [21]:

rectoy(N.M) : - N = 0, M = 0.
rectoy(N.M) : - N l i s N- l , r e c t o y (N l , R) , M i s Nl+R.

Assume the cali pa t te rn rectoy(N,M) : { N / i n t } which indicates tha t external
calis to r e c t o y are performed with an integer valué, i n t , in the ñrst argument
N. It holds tha t FCert = rectoy(N, M) : { N / i n t } i-> {N/ int , M/int} (the steps per­
formed by A N A L Y Z E _ F are detailed in [1]). Assume now tha t we use a strategy
Í2 <G QHS which assigns the highest priority to redundant updates and selects
the rules for r e c t o y in the textual order. For this strategy, the unique entry in
FCert is not relevant as there has been no relevant updated event in the queue.
Therefore, the reduced certiñcate for our example is empty (and, with the tech-
niques of the next section, our checker is able t o reconstruct the ñxpoint in a
single pass from this empty certiñcate). In contrast, lightweight bytecode veriñ-
cation [21] sends, together with the program, the reduced non-empty certiñcate
cert = ({30 i—> (e, rectoy-int-int-int-A.)}, e), which states tha t at program point
30 the stack does not contain information (ñrst occurrence of e) ,6 and variables
N, M and R have type int, int and A.. The need for sending this information
is because r ec toy , implemented in Java, contains an ¿/-branch (equivalent to
the branching for selecting one of our two clauses for rectoy). Thus cert has to
inform the checker tha t it is possible for variable R at point 30 to be undeñned,
if the if condition does not hold. Note tha t this program is therefore an example
of how our approach improves on state-of-the-art P C C techniques by reducing
the certiñcate further while still keeping the checking process one-pass. D

4.2 G e n e r a t i o n of Cert i f icates w i t h o u t Irrelevant Entr i e s

In this section, we proceed to instrument the analyzer of Algorithm 1 with the
extensions necessary for producing reduced certiñcates, as deñned in Def. 6.
The resulting analyzer A N A L Y Z E _ R is presented in Algorithm 2. It uses the
same procedures of Algorithm 1 except for the new deñnitions of process_arc,
add_dependent_rules and ¡nsert_answer_¡nfo. The differences with respect to the
original deñnition are:

1. We annotate suspended ares in the dependeney are table. A dependeney A :
CPA => [-] B : CPB in the dependeney are table is said to be suspended if
when analysing the corresponding are, the answer table did not contain an
entry for B : CPg or it contained A. as answer. Suspended ares are marked in
LIO of function process_arc. A not suspended are in the dependeney are table
will be named relevant. Suspended ares do not cause reprocessing in the sense
tha t its continuation is not inserted in the queue (see L18 in Algorithm 1).
These suspended ares are processed when an updated event (possibly initial)
for B : CPB is extracted from the queue.

6 The second occurrence of e indicates that there are no backwards jumps.

2. We count the number of relevant updates for each cali pattern. To do this,
we associate with each entry in the answer table a new ñeld "it" whose
purpose is to identify relevant entries. Concretely, u indicates the number of
updated events processed for the entry. u is initialized when the (unique and
ñrst) initial updated event occurs for a cali pat tern. The initialization of u
is different for redundant and initial updates as explained in the next point.
When the analysis ñnishes, if u > 1, we know tha t at least one reprocessing
has occurred and the entry is thus relevant. The essential point to note is
tha t u has to be increased when the event is actually extracted from the
queue (L14) and not when it is introduced in it (L26). The reason for this
is tha t when a non-redundant, updated event is introduced, if the priority
queue contains an identical event, then the processing is performed only
once. Therefore, our counter must not be increased.

3. We do not genérate redundant updates. Our algorithm does not introduce
redundant updated events (L26). However, if they are initial (and redundant)
they have to be counted as if they had been introduced and processed and,
thus, the next update over them has to be considered always relevant. This
effect is achieved by initializing the u-valué with a higher valué ("1" in L23)
than for initial updates ("0" in L22). Indeed, the valué "0" just indicates tha t
the initial updated event has been introduced in the priority queue but not
yet processed and tha t all ares in the dependeney are table associated to it are
suspended ares. The u valué will be increased to " 1 " either once it is extracted
from the queue or if another updated event occurs before processing the
initial updated event and a relevant are appears in the set of dependencies
associated to the cali pa t te rn at hand (L27). The function relevant {Dep),
where Dep is a set of dependencies, returns the set of relevant dependencies
(not suspended) oceurring in Dep. This distinction is required because it
is possible to genérate new updated events before the corresponding initial
and non redundant updated event be processed. In such case, if the set of
dependencies associated to the cali pat tern only contains suspended ares,
this updated event must be considered also initial. Otherwise the updated
event is relevant, and thus u must be increased to 1. Therefore, when this
updated event be processed, u will be increased to "2" (relevant entry).

In Algorithm 2, a cali (u, AP)=get_from_answer_table(^4 : CP) looks up in the
answer table the entry for A : CP and returns its u-valué and its answer AP.
A cali set_in_answer_table(^4(w) : CP i—> AP) replaces the entry for A : CP with
the new one A(u) : CP i—> AP.

P r o p o s i t i o n 1. Let P G Prog, Da G ADom, Sa G AAtom, íl G QHS. Let
FCert be the answer table computed by ANALYZE-R^SQ, , íl) for P in Da. Then,
an entry A(u) : CPA I—> AP G FCert is relevant iff u> 1.

Note tha t , except for the control of relevant entries, ANALYZE_F(S'a, íí) and
ANALYZE_R(S'a, ÍÍ) have the same behavior and they compute the same answer
table (see [1] for details). We use function removeJrrelevant_answers which takes

A l g o r i t h m 2 ANALYZE_R: Analyzer instrumented for Certifícate Reduction

1: procedure PROCESS_ARC(_fffc : CP0 =>• [CPi] Bk ¿ : CP2,f¿)
2: W := vars(Ak,Bk¡1,... ,Bk¡rík); CP3 := get Jnswer(Bfc,¡ : CP2,CPX,W,Q)
3: if CP3 7̂ _L and i =/= nk t h en
4: CP4 := Arestr\ct(CP3,vars(Bk}i+1));
5: add_event(arc(/ffc : CP0 => [CP3] Bk¡i+1 : CP4),Q)
6: else if CP3 7̂ _L and i = nk t h e n
7: J 4 P I : = Arestrict(CP3, vars(Hk)); insert.answer_info(ií : CP0 ^ APi, Q)
8: if Bk i is not a constraint t h e n
9: if' CPS = -1 t h e n

10: add suspended(Hk : CPQ =>• [CPi] Bk,i '• CP2) to dependency are table
11: else add Hk : CPQ =>• [CPi] Bk,i '• CP2 to dependency are table

12: procedure ADD_DEPENDENT_RULES(A : CP, Q)
13: (AP, u) =get_from_answer_table(A : CP)
14: set_in_answer_table(A(w + 1) : CP i-» AP)
15: for all are of the form Hk : CPQ =>• [CPi] Bk,i '• CP2 in graph where there

exists renaming a s.t. A : CP = (Bk,i '• CP2)a do
16: add_event(arc(iífc : CP0 => [CPi] Bk¡i : CP2), ü)

17: procedure INSERT_ANSWER_INFO(_ff : CP i-> J4P, J?)
18: ^ P 0 := lookup.answer(ií : CP, Í2)
19: APÍ := A\ub(AP,AP0)
20: if AP0 7̂ A P l t h e n % upd.ted required
21: if AP0 = _L t h e n
22: if DAT\H-.GP 7̂ 0 t h e n U = 0 % non reduntl.nt initml update

23: else U = 1 % redundant initial update

24: else (u, _)=get_from_answer_table(ií : CP) % not mitmi update
25: if DAT\H-.CP 7̂ 0 t h e n
26: add.event(updated(ií : CP))
27: if u = 0 and relevant(PL4!T|i/:C.p) 7̂ 0 t h e n w = 1
28: set_in_answer_table(ií"(w) : CP i-» APi)

a set of answers of the form A(u) : CP 1—> AP G FCert and returns the set of
answers A : CP 1—> AP such tha t w > 1.

Def in i t ion 7 (certif ier) . We define the function CERT1F1ER_R: ProgxADomx
AAtom x A/n í x Q.ffi> >->• AC'ert, which takes P G Prog, Da G ,4P>om, 5 a G AA-
tom, Ia G AInt, Q G Qffi>\ It returns as certifícate, RCert=remove_¡rrelevant_ans-
wers(FCert), where FCert =ANALYZE_R(/S'a, f¿), ¿/FCert C Ia.

5 Checking Reduced Certiñcates

In the ACC framework for full certiñcates the checking algorithm [2] uses a
speciñe graph traversal strategy, say fie • This checker has been shown to be very
efficient but in tu rn its design is not generic with respect to this issue (in contrast
to the analysis design). This is not problematic in the context of full certiñcates
since, even if the certiñer uses a strategy QA which is different from Í2c, it
is ensured tha t all valid certiñcates get validated in one pass by tha t speciñe
checker. This result does not hold any more in the case of reduced certiñcates.
In particular, completeness of checking is not guaranteed if QA 7̂ &c- This

occurs because though the answer table is identical for all strategies, the subset
of redundant entries depends on the particular strategy used. The problem is
tha t , if there is an entry A : CP i—> AP in FCert such tha t it is relevant w.r.t.
fie but it is not w.r.t. ÜA, then a single pass checker will fail to validate the
RCert generated using Í2A- Therefore, it is essential in this context to design
generic checkers which are not tied to a particular graph traversal strategy.
Upon agreeing on the appropriate parameters ,7 the consumer uses the particular
instance of the generic checker resulting from application of such parameters.

It should be noted tha t the design of generic checkers is also relevant in light
of current t rends in veriñed analyzers (e.g., [11, 6]), which could be transferred di-
rectly to the checking end. In particular, since the design of the checking process
is generic, it becomes feasible in ACC to use automatic program transformers to
specialize a certiñed (speciñe) analysis algorithm in order to obtain a certiñed
checker with the same strategy while preserving correetness and completeness.

The following deñnition presents a generic checker for validating reduced
certiñeates. In addition to the genericity issue discussed above, an important
difference with the checker for full certiñeates [2] is tha t there are certain entries
which are not available in the certiñeate and tha t we want to reconstruct and
output in checking. The reason for this is tha t the safety policy has to be tested
w.r.t. the full answer table -Equat ion (2). Therefore, the checker must recon­
struct, from RCert, the answer table returned by A N A L Y Z E _ F , FCert, in order to
test for adherence to the safety policy -Equat ion (4). Note tha t reconstructing
the answer table does not add any additional cost compared to the checker in
[2], since the full answer table also has t o be created in [2].

Def in i t ion 8 (checker for reduced cert i f icates) . Function C H E C K I N G _ R is
defined as function ANALYZE_R with the following modifications:

1. It receives RCert as an additional input parameter.
2. It may fail to produce an answer table. In that case it issues an Error.
3. Function insert_answerJnfo is replaced by the new one in Algorithm 3.

Function C H E C K E R _ R takes P G Prog, Da G ADom, Sa G AAtom, Í2 G QHS,
RCert G ACert and returns the result of C H E C K I N G - R (S a , Í2, RCert) for P in
Da.

Let us briefly explain the differences between Algorithms 2 and 3. First, the
checker has to detect (and issue) two sources of errors:

a) The answer in the certiñeate is more precise than the one obtained by the
checker (L4). This is the traditional error in ACC and means tha t the cer­
tifícate and program at hand do not correspond to each other.

7 In a particular application of our framework, we expect that the graph traversal
strategy is agreed a priori between consumer and producer. But, if necessary (e.g.,
the consumer does not implement this strategy), then it could be sent along with
the transmitted package.

A l g o r i t h m 3 Generic Checker for Reduced Certiñcates C H E C K I N G _ R

1: procedure INSERT_ANSWER_INFO(_ff : CP i-> AP, Q)
2: AP0 := lookup_answer(ií : CP, Í2); APX : = A\ub(AP, AP0)
3: (IsIn,AP')=look_fixpoint(ií : CP,RCert)
4: if Isln and A\ub(AP, AP1) ^ AP' then return Error x,,,.,.»^,)
5: if APo =/= APl theil % updated roquirod
6: i f AP0 = _L t h e n
7: if DAT\H..Cp ^9 then u = 0; add_event(updated(H : CP), Q)
8: else u = 1
9: else (u, _)=get_from_answer_table(ií : CP)

10: if DAT\H-.GP + 0 and (u = 1 or (u = 0 and relevant(DAT\H-.cp) +
then return Error % error of tyPo b)

11: if Isln and AP0 = _L then APi = A P '
12: set.in.answer_table(ií(w) : CP ^ AP!)

13:
14:
15:
16:

function LOOK_FIXPOINT(A : CP,RCert)
if 3 a renaming a such that a(A : CP t-^ AP) G RCert then

return (True,a^1 (AP))
else return (False,_L)

b) Recomputation is required. This should not occur during checking, i.e., only
initial updates should be generated (L7) by the checker.8 This second type of
error corresponds to situations in which a relevant update is needed in order
to obtain an answer (it cannot be obtained in one pass). This is detected in
LIO prior to introducing the (non redundant) update if either u is already 1
or u = 0 but its associated dependencies contain a relevant are.

The second difference is tha t the entries A : CP i—> AP' stored in RCert have to
be added to the answer table, after the initial updated event for A : CP oceurs,
in order to detect errors of type a) above. In particular, L l l and L12 add the
ñxpoint AP' stored in RCert to the answer table together with the corresponding
u-valué (same valué as in Algorithm 2).

The following theorem ensures tha t if C H E C K E R _ R validates a certiñeate (i.e.,
it does not return Error), then the re-constructed answer table is a ñxpoint. This
implies tha t any certiñeate which gets validated by the checker is indeed a valid
one.

T h e o r e m 1 (corree tness) . Let P <G Prog, Da <G ADom, Sa <G A Atora,
Ia G AInt and Í2A,Í2C G QHS. Let FCert= C E R T I F I E R _ F (/ P , Da,Sa,Ia, Í2A) and
RCert= C E R T I F I E R _ R (/ P , Da,Sa, Ia,ÍÍA)- If C H E C K E R _ R (/ P , Da,Sa,Ia, RCert,
Í2c) does not issue an Error, then it returns FCert.

The following theorem (completeness) provides sufficient conditions under which
a checker is guaranteed to validate reduced certiñcates which are actually valid.

T h e o r e m 2 (c o m p l e t e n e s s) . Let P G Prog, Da G ADom, Sa G AAtom, Ia G

AInt and Í¿A G QHS. Let FCert = C E R T I F I E R _ F (/ P , Da,Sa,Ia, Í¿A) and RCertQA

8 Initial updates are not needed in the particular instance of the checker of [2] because
the strategy is fixed. They are needed to model a generic checker though.

Program
aiakl
bid
browse
deriv
grammar
hanoiapp
occur
progeom
qsortapp
query
rdtok
rectoy
serialize
zebra

Overall

Size

Source
1555
4945
2589

957
1598
1172
1367
1619
664

2090
13704

154
987

2284

Certiñcate Size

FCert
3090
5939
1661
288

1259
2325
1098
2148
2355

531
6533

167
1779
4058

RCert
1616
883
941
288
40

880
666

40
650

40
2659

40
1129

40

F / R

1.912
6.726
1.765
1.000

31.475
2.642
1.649

53.700
3.623

13.275
2.457
4.175
1.576

101.450

3.35

Checking Time

CF

85
46
18
50
15
30
20
20
20
18
57

8
27

123

CR

86
49
20
28
14
28
19
15
21
12
58

8
27

125

CF/CR

0.991
0.943
0.929
1.806
1.042
1.049
1.085
1.351
0.990
1.436
0.986
1.079
1.022
0.979

1.06

Table 1. Size of Reduced Certiñcates and Checking Time

= CERTlFlER_R('P,Da,S
,
Q,,.rQ,,J2A,'- Let f2c € QHS be such that RCertfic =

CERTIFIER_R(/P,Da, Sa,Ia,í2c) andRCertÜA D RCertfic. Then, CHECKER_R(/P,

Da,Sa,Ia, RCertf¡A,ílc) returns FCert and does not issue an Error.

Obviously, if fie = ^A then the checker is guaranteed to be complete. Addition-
ally, a checker using a different strategy fie is als° guaranteed to be complete as
long as the certiñcate reduced w.r.t fie is equal to or smaller than the certiñcate
reduced w.r.t f¿A- Furthermore, if the certiñcate used is full, the checker is com­
plete for any strategy. Note that if RCertQA ~J) RCertfic, CHECKER_R with the
strategy fie niay fail to validate RCer t^ , which is indeed valid for the program
under f¿A-

6 Discussion and Experimental Evaluation

As we have illustrated throughout the paper, the gain of the reduction is di-
rectly related to the number of updates (or iterations) performed during analysis.
Clearly, depending on the graph traversal strategy used, different instances of the
generic analyzer will genérate reduced certiñcates of different sizes. Signiñcant
and successful efforts have been made during recent years towards improving
the efficieney of analysis. The most optimized analyzers actually aim at reduc-
ing the number of updates necessary to reach the ñnal ñxpoint [19]. Interestingly,
our framework greatly beneñts from all these ad van ees, since the more efficient
analysis is, the smaller the corresponding reduced certiñcates are. We have im-
plemented a generator and a checker of reduced certiñcates in CiaoPP. Both the
analysis and checker use the optimized depth-ñrst new-calling QHS of [19].

In Table 1 we study two crucial points for the practicality of our proposal: the
size of the reduced vs. full certiñcates and the relative efficiency of checking re­
duced certiñcates. As mentioned before, the algorithms are parametric w.r.t. the
abstract domain. In our experiments we use the sharing+freeness [15] abstract
domain, tha t is very useful for reasoning about instantiation errors, a crucial
aspect for the safety of logic programs. The system is implemented in Ciao 1.13
[5] with compilation to bytecode. The experiments have been performed on a
Pentium 4 (Xeon) at 2 Ghz and 4 Gb RAM, running GNU Linux FC-2, 2.6.9.

The set of benchmarks used is the same as in [10,2], where they are de-
scribed in more detail. The column S o u r c e shows the size in bytes of the source
code. The size in bytes of the certiñcates is showed in the next set of columns.
F C e r t and R C e r t contain the size of the full and reduced certiñcate, respec-
tively, for each benchmark and they are compared in column (F / R) . Our re-
sults show tha t the reduction in size is very signiñcant in all cases. It ranges
from 101.45 in zebra (RCert is indeed empty - t h e size of an empty certiñcate is,
in this case, 40 bytes since it includes information about the abstract domain
used for generating the cer t iñcate- whereas FCert is 4058) to 1 for deriv (both
certiñcates have the same size). The ñnal par t of the table compares the check­
ing t ime both when full and reduced certiñcates are used. Execution times are
given in milliseconds and measure runtime. They are computed as the arithmetic
mean of ñve runs. For each benchmark, Cp and Cj ¡ are the times for executing
C H E C K E R _ F and C H E C K E R _ R , respectively. The column C F / C ñ compares both
checking times. It can be seen tha t the efficiency of C H E C K E R _ R is very similar
to tha t of C H E C K E R _ F in most cases. The last row (Overall) summarizes the
results for the different benchmarks using a weighted mean, where the weight is
the actual checking time for each benchmark. Overall, certiñcates are reduced
by a factor of 3.35 and the checker for reduced certiñcates is slightly faster, with
an overall speedup of 1.06.

References

1. E. Albert, P. Arenas, G. Puebla, and M. Hermenegildo. Reduced Certiñcates for
Abstraction-Carrying Code. Technical Report CLIP8/2005.0, Technical University
of Madrid (UPM), School of Computer Science, UPM, October 2005.

2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.
of LPAR'04, number 3452 in LNAI, pages 380-397. Springer-Verlag, 2005.

3. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile resource
guarantees for smart devices. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean, editors, Proceedings of CASSIS'04, LNCS. Springer, 2004. To
appear.

4. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91-124, 1991.

5. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and
G. Puebla (Eds.). The Ciao System. Reference Manual (vi.13). Tech­
nical report, School of Computer Science (UPM), 2006. Available at
h t t p : / / c l i p . d i a . f i . upm.e s /So f twa re /C iao / .

http://clip.dia.fi.upm.es/Software/Ciao/

6. D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a Data Flow Anal-
yser in Constructive Logic. In Proc. of ESOP 2004, volume LNCS 2986, pages 385
- 400, 2004.

7. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL'77, pages 238-252, 1977.

8. P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The astrée analyser. In Proc. ESOP 2005, pages 21-30. Springer LNCS 3444, 2005.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-García. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140,
October 2005.

10. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM TOPLAS, 22(2):187-223, March 2000.

11. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science,
3(298):583-626, 2003.

12. Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal
of Automated Reasoning, 30(3-4):235-269, 2003.

13. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-
tion, 1987.

14. Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction.
The MIT Press, 1998.

15. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna­
tional Conference on Logic Programming, pages 49-63. MIT Press, June 1991.

16. G. Necula. Proof-Carrying Code. In Proc. of POPL'97, pages 106-119. ACM
Press, 1997.

17. G.C. Necula and P. Lee. Efficient representation and validation of proofs. In
Proceedings of LICS'98, page 93. IEEE Computer Society, 1998.

18. G.C. Necula and S.P. Rahul. Oracle-based checking of untrusted software. In
Proceedings of POPL'01, pages 142-154. ACM Press, 2001.

19. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal­
ysis of Logic Programs. In Proc. of SAS'96, pages 270-284. Springer LNCS 1145,
1996.

20. E. Rose and K. Rose. Java access protection through typing. Concurrency and
Computation: Practice and Experience, 13(13):1125-1132, 2001.

21. K. Rose, E. Rose. Lightweight bytecode verification. In OOPSLA Workshop on
Formal Underpinnings of Java, 1998.

22. R. Sekar, V.N. Venkatakrishnan, S. Basu, S. Bhatkar, and D. DuVarney. Model-
carrying code: A practical approach for safe execution of untrusted applications.
In Proc. ofSOSP'03, pages 15-28. ACM, 2003.

