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Abs t r ac t . Abstraction-Carrying Code (ACC) has recently been pro-
posed as a framework for mobile code safety in which the code supplier 
provides a program together with an abstraction whose validity entails 
compliance with a predefined safety policy. The abstraction plays thus 
the role of safety certifícate and its generation is carried out automat-
ically by a fixed-point analyzer. The advantage of providing a (fixed-
point) abstraction to the code consumer is that its validity is checked in 
a single pass of an abstract interpretation-based checker. A main chal­
lenge is to reduce the size of certificates as much as possible while at 
the same time not increasing checking time. We introduce the notion 
of reduced certifícate which characterizes the subset of the abstraction 
which a checker needs in order to validate (and re-construct) the full 
certifícate in a single pass. Based on this notion, we instrument a generic 
analysis algorithm with the necessary extensions in order to identify the 
information relevant to the checker. We also provide a correct checking 
algorithm together with sufficient conditions for ensuring its complete-
ness. The experimental results within the CiaoPP system show that our 
proposal is able to greatly reduce the size of certificates in practice. 

1 Introduction 

Proof-Carrying Code (PCC) [16] is a general framework for mobile code safety 
which proposes to associate safety information in the form of a certifícate to 
programs. The certiñcate (or proof) is created at compile t ime by the certifier 
on the code supplier side, and it is packaged along with the code. The consumer 
which receives or downloads the (untrusted) code+certiñcate package can then 
run a checker which by an efficient inspection of the code and the certiñcate can 
verify the validity of the certiñcate and thus compliance with the safety policy. 
The key beneñt of this approach is tha t the task of the consumer is reduced 
to checking, a procedure tha t should be much simpler, efficient, and automatic 
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than generating the original certiñcate. Abstraction-Carrying Code (ACC) [2] 
has been recently proposed as an enabling technology for PCC in which an 
abstraction (or abstract model of the program) plays the role of certiñcate. An 
important feature of ACC is that not only the checking, but also the generation of 
the abstraction is carried out automatically, by a ñxed-point analyzer. Both the 
analysis and checking algorithms are always parametric on the abstract domain, 
with the resulting genericity. This allows proving a wide variety of properties by 
using the large set of abstract domains that are available, well understood, and 
with already developed proofs for the correctness of the corresponding abstract 
operations. This is one of the fundamental advantages of ACC.4 

In this paper, we consider analyzers which construct a program analysis graph 
which is an abstraction of the (possibly infinite) set of states explored by the 
concrete execution. To capture the different graph traversal strategies used in 
different fixed-point algorithms we use the generic description of [10], which 
generalizes the algorithms used in state-of-the-art analysis engines. Essentially, 
the certification/analysis carried out by the supplier is an iterative process which 
repeatedly traverses the analysis graph until a fixpoint is reached. The analysis 
information inferred for each cali is stored in the answer table [10]. In the original 
ACC framework, the final full answer table constitutes the certifícate. Since this 
certiñcate contains the fixpoint, a single pass over the analysis graph is sufficient 
to validate it on the consumer side. It should be noted that while the ACC 
framework and our work here are applied at the source-level, and in existing PCC 
frameworks the code supplier typically packages the certifícate with the ohject 
code rather than with the source code (both are untrusted), this is without loss 
of generality because both the ideas in the ACC approach and in our current 
proposal can also be applied to bytecode. 

One of the main challenges for the practical uptake of ACC (and related 
methods) is to produce certiñcates which are reasonably small. This is important 
since the certiñcate is transmitted together with the untrusted code and, henee, 
reducing its size will presumably contribute to a smaller transmission time. Also, 
this reduces the storage cost for the certifícate. Nevertheless, a main concern 
when reducing the size of the certiñcate is that checking time is not increased as 
a consequence. In principie, the consumer could use an analyzer for the purpose of 
generating the whole ñxpoint from scratch, which is still feasible since analysis is 
automatic. However, this would defeat one of the main purposes of ACC, which 
is to reduce checking time. The objective of this paper is to characterize the 
smallest subset of the abstraction which must be sent within a certiñcate -and 
which still guarantees a single pass checking process- and to design an ACC 
scheme which generates and validates such reduced certiñcates. 

4 The coexistence of several abstract domains in our framework is somewhat related to 
the notion of models to capture the security-relevant properties of code, as addressed 
in the work on Model-Carrying Code [22].However, their combination has not been 
studied which differs from our idea of using combinations of (high-level) abstract 
domains, which is already well understood. 



Fixpoint compression is being used in different contexts and tools. For in-
stance, in the Astrée analyzer [8], only one abstract element by head of loop is 
kept for memory usage purposes. In the PCC scheme, the basic idea in order to 
compress a certiñcate is to store only the analysis information which the checker 
is not able to reproduce by itself [12]. With this purpose, Necula and Lee [17] 
designed a variant of LF, called LF¿, in which certiñcates discard all the infor­
mation that is redundant or that can be easily synthesized. Also, Oracle-based 
PCC [18] aims at minimizing the size of certiñcates by providing the checker with 
the minimal information it requires to perform a proof. Tactic-based PCC [3] 
aims at minimizing the size of certiñcates by relying on large reasoning steps, 
or tactics, that are understood by the checker. Finally, this general idea has 
also been deployed in lightweight bytecode veriñcation [20] where the certiñcate, 
rather than being the whole set of frame types (FT) associated to each program 
point is reduced by omitting those (local) program point FTs which correspond 
to instructions without branching and which are lesser than the ñnal FT (fix­
point). Our proposal for ACC is at the same time more general (because of the 
parametricity of the ACC approach) and carries the reduction further because it 
includes only in the certifícate those calis in the analysis graph (including both 
branching an non branching instructions) required by the checker to re-generate 
the certiñcate in one pass. 

2 A General View of Abstract ion-Carrying Code 

We assume the reader is familiar with abstract interpretation (see [7]) and (Con-
straint) Logic Programming (C)LP (see, e.g., [14] and [13]). A certiñer is a 
function certifier : Prog x ADom x AInt i—> ACert which for a given program 
P £ Prog, an abstract domain Da £ ADom and a safety policy Ia £ AInt 
generates a certiñcate Certa £ ACert, by using an abstract interpreter for Da, 
which entails that P satisñes Ia. In the following, we denote that Ia and Certa 

are speciñcations given as abstract semantic valúes of Da by using the same a. 
The basics for deñning such certiñers (and their corresponding checkers) in ACC 
are summarized in the following six points and Equations: 

Approximation. We consider an abstract domain (Da, C) and its corresponding 
concrete domain (2D, C), both with a complete lattice structure. Abstract valúes 
and sets of concrete valúes are related by an abstraction function a : 2D —> Da, 
and a concretization function 7 : Da —> 2D. An abstract valué y £ Da is a 
safe approximation of a concrete valué x £ D iff x £ 7(3/). The concrete and 
abstract domains must be related in such a way that the following holds [7] 
\/x £ 2D : j(a(x)) D x and \/y £ Da : a(j(y)) = y. In general IZ is induced 
by C and a. Similarly, the operations of least upper bound (U) and greatest lower 
bound (n) mimic those of 2D in a precise sense. 

Analysis. We consider the class of fixed-point semantics in which a (monotonic) 
semantic operator, Sp, is associated to each program P. The meaning of the 
program, |P]], is deñned as the least ñxed point of the Sp operator, Le., [[P]] = 
lfp(S'p). If Sp is continuous, the least ñxed point is the limit of an iterative 



process involving at most ui applications of Sp starting from the bottom element 
of the lattice. Using abstract interpretation, we can usually only compute |[P]]a, 
as [[P]]a = lfp(Sp). The operator Sp is the abstract counterpart of Sp. 

analyzer(P,DQ )=lfp(^) = [P] Q (1) 

Correctness of analysis ensures that [[P] <G 7([-P]a)-

Verification Condition. Let Certa be a safe approximation of P . If an ab­
stract safety speciñcation Ia can be proved w.r.t. Certa, then P satisñes the 
safety policy and Certa is a valid certiñcate: 

Certa is a valid certifícate for P w.r.t. Ia if Certa E la (2) 

Certifier. Together, equations (1) and (2) deñne a certiñer which provides pro­
gram ñxpoints, |[P]|a, as certiñcates which entail a given safety policy, i.e., by 
taking Certa = [ P ] a . 

Checking. A checker is a function checker: Prog x ADom x ACert i—> bool which 
for a program P <G Prog, an abstract domain Da € ADom and a certiñcate 
Certa S ACert checks whether Certa is a ñxpoint of Sp or not: 

checker(P, Da, Certa) returns true iff (Sp(Certa) = Certa) (3) 

Verification Condition Regeneration. To retain the safety guarantees, the 
consumer must regenérate a trustworthy verification condition -Equation 2- and 
use the incoming certifícate to test for adherence of the safety policy. 

P is trusted iff Certa E la (4) 

A fundamental idea in ACC is that, while analysis -equation (1)- is an iterative 
process, checking -equation (3)- is guaranteed to be done in a single pass over 
the abstraction. 

3 Generation of Certiñcates in ACC 

This section recalls ACC and the notion of full certiñcate in the context of (C)LP 
[2]. For concreteness, we build on the algorithms of CiaoPP [9]. 

Algorithm 1 has been presented in [10] as a generic description of a fixed-
point algorithm which generalizes those used in state-of-the-art analysis engines, 
such as the one in CiaoPP [9]. In order to analyze a program, traditional (goal de-
pendent) abstract interpreters for (C)LP programs receive as input, in addition 
to the program P and the abstract domain Da, a set Sa € A Atora of Abstract 
Atoms (or cali patterns). Such cali patterns are pairs of the form A : CP where 
A is a procedure descriptor and CP is an abstract substitution (i.e., a condition 
of the run-time bindings) of A expressed as CP <G Da. For brevity, we sometimes 
omit the subscript a in the algorithms. The analyzer of Algorithm 1 constructs 
an and-or graph [4] (or analysis graph) for Sa which is an abstraction of the 
(possibly infinite) set of (possibly infinite) execution paths (and-or trees) ex-
plored by the concrete execution of initial the calis described by Sa in P . The 



A l g o r i t h m 1 Generic Analyzer for Abstraction-Carrying Code 

1: function ANALYZE_F(S, Q) 
2 
3 
4 
5 
6 
7 
8 

9 
10: 
11: 
12: 
13: 

14: 
15: 
16: 
17: 
18: 
19: 
20: 
21: 
22: 

23: 
24: 
25: 
26: 

27: 
28: 
29: 
30: 

for A : CP € S do 
add_event(raewcaii(A : CP), Q) 

while E := next_event(J?) do 
if E := newcall(A : CP) then new_call_pattern(A : CP, Q) 
else if E := updated(A : CP) then add_dependent_rules(A : CP, Q) 
else if E := arc(R) then process_arc(i?, J?) 

return answer table 
procedure NEW_CALL_PATTERN(A : CP, Q) 

for all rule Ak : -Bk,i, • • •, Bk¡nk do 
CP0 :=Aextend(CP,vars(.. .,Bk,i, • • •)); CPX := Arestrict( CP0, vars(BkA)) 
add.event(arc(Ak : CP => [CP0]Bk¡1 : CPi),í2) 

add A : CP t-^ _L to answer table 

procedure PROCESS_ARC(_fffc : CP0 =^ [CPi] Bk,i • CP2,f¿) 
if Bk,i is not a constraint then 

add Hk : CPQ =^> [CPi] Bk,i '• CP2 to dependency are table 
W :=vars(Ak,BkA,...,Bk,n'k); CP3 := get.answer(Bfc,¿ : CP2,CPUW,Í2) 
if CP3 =/= _L and i =/= nk then 

CP4, := Arestrict(CP3,vars(Bk}i+i)); 
add_event( arc(Hk : CP0 => [CP3] Bk¡i+1 : CP4),Í2) 

else if CP3 7̂  _L and i = nk then 
AP\ := Arestrict(CP3, vars(Hk)); insert_answer_info(ií : CPQ H^ AP\, Q) 

function GET_ANSWER(L : CP2, CP\, W, Q) 
if L is a constraint then return Aadd(L, CPi) 
else AP0 := lookup_answer(L : CP2,Ü); AP\ := Aextend(AP0,W) 

return Aconj(CPi, APi) 

function LOOKUP_ANSWER(A : CP, Q) 
if there exists a renaming a s.t.cr(A : CP) t-^ AP in answer table then 

return a~1(AP) 
else add_event(newcall(<j (A : CP)), Q) where a is renaming s.t. a (A) in base 

form; return _L 

31: procedure INSERT_ANSWER_INFO(_ff : CP i-> AP, Q) 
32: AP0 := lookup.answer(ií : CP); AP! := A\ub(AP,AP0) 
33: if AP0 ^ AP! then 
34: add (H : CP ^ APi) to answer table ; 
35: add-event(updated(H : CP), Q) 

36: p rocedure ADD_DEPENDENT_RULES(A : CP, Q) 
37: for all are of the form Hk : CPQ => [CPi] Bk,i '• CP2 in graph where there 

exists renaming a s.t. A : CP = (Bk,i '• CP2)a do 
38: add_event(arc(iífc : CP0 => [CPi] Bk¡i : CP2), Í2) 

program analysis graph is implicitly represented in the algorithm by means of 
two global da ta structures, the answer table and the dependency are table, both 
initially empty. 

— The answer table contains entries of the form A : CP 1—> AP where A is 
always form.5 Informally, its entries should be interpreted as "the 

6 Program rules are assumed to be normalized: only distinct variables are allowed 
to occur as arguments to atoms. Furthermore, we require that each rule defining 



answer pattern for calis to A satisfying precondition (or cali pattern) CP 
meets postcondition (or answer pattern), AP." 

— A dependency are is of the form Hk : CPo =>• \CP\\ Bk,i : CP2. This is 
interpreted as follows: if the rule with Hk as head is called with description 
CPo then this causes the i-th literal Bk¿ to be called with description CP2. 
The remaining part CP\ is the program annotation just before Bk¿ is reached 
and contains information about all variables in rule k. 

Intuitively, the analysis algorithm is a graph traversal algorithm which places 
entries in the answer table and dependency are table as new nodes and ares 
in the program analysis graph are encountered. To capture the different graph 
traversal strategies used in different ñxed-point algorithms, a prioritized event 
queue is used. We use Q <G QHS to refer to a Queue Handling Strategy which a 
particular instance of the generic algorithm may use. Events are of three forms: 

— newcall(A : CP) which indicates that a new cali pattern for literal A with 
description CP has been encountered. 

— arc(Hk :_=>[_] Bk¿ '• -) which indicates that the rule with Hk as head needs 
to be (re)computed from the position k,i. 

— updated(A : CP) which indicates that the answer description to cali pattern 
A with description CP has been changed. 

The functions adcLevent and next_event respectively push an event to the priority 
queue and pop the event of highest priority, according to Q. The algorithm is 
deñned in terms of four abstract operations on the domain Da: 

— Arestr¡ct( CP,V) performs the abstract restriction of a description CPto the 
set of variables in the set V, denoted vars(V); 

— Aextend (CP,V) extends the description CPto the variables in the set V] 
— Aadd(C, CP) performs the abstract operation of conjoining the actual con­

straint C with the description CP; 
— Aconj(CPi, CP2) performs the abstract conjunction of two descriptions; 
— Alub(CPi, CP2) performs the abstract disjunction of two descriptions. 

More details on the algorithm can be found in [10,19]. Let us briefly explain its 
main procedures. The algorithm centers around the processing of events on the 
priority queue, which repeatedly removes the highest priority event (Line 4) and 
calis the appropriate event-handling function (L5-7). The function new_call_pat-
tern initiates processing of all the rules for the deñnition of the internal literal A, 
by adding are events for each of the ñrst literals of these rules (L12). Initially, the 
answer for the cali pattern is set to ± (L13). The procedure process_arc performs 
the core of the analysis. It performs a single step of the left-to-right traversal 
of a rule body. If the literal Bk¿ is not a constraint (L15), the are is added to 
the dependency are table (L16). Atoms are processed by function get_answer. 

a predícate p has identical sequence of variables xvi,.. .xPn in the head atom, i.e., 
p(xpi,... xPn). We cali this the base form oí p. 



Constraints are simply added to the current description (L24). In the case of 
literals, the function lookup_answer ñrst looks up an answer for the given cali 
pattern in the answer table (L28) and if it is not found, it places a newcall 
event (L30). When it ñnds one, then this answer is extended to the variables in 
the rule the literal occurs in (L25) and conjoined with the current description 
(L26). The resulting answer (L17) is either used to genérate a new are event to 
process the next literal in the rule, if B¡.i is not the last one (L18); otherwise, the 
new answer is computed by ¡nsert_answer_¡nfo. This is the part of the algorithm 
more relevant to the generation of reduced certiñeates. The new answer for the 
rule is combined with the current answer in the table (L32). If the ñxpoint for 
such cali has not been reached, then the answer table entry is updated with the 
combined answer (L34) and an updated event is added to the queue (L35). The 
purpose of such an update is that the function add_dependent_rules (re)processes 
those calis which depend on the cali pattern A : CP whose answer has been 
updated (L37). This effect is achieved by adding the are events for each of its 
dependencies (L38). Note that dependeney ares are used for efficieney: they allow 
us to start the reprocessing of a rule from the body atom which actually needs 
to be recomputed due to an update rather than from the leftmost atom. 

The following deñnition corresponds to the essential idea in the ACC frame-
work -equations (1) and (2)- of using a static analyzer to genérate the certiñ­
eates. The analyzer corresponds to Algorithm 1 and the certiñcate is the full 
answer table. 

Definition 1 (full certifícate). We define function CERTIFIER_F :ProgxADom 
x A Atom x AInt x QHS i—> ACert which takes P <G Prog, Da <G ADom, Sa <G 
AAtom, Ia <G AInt, Q <G QHS and returns as full certifícate, FCert <G ACert, 
the answer table computed, by ANALYZE_F(S'a, Í2) for P in Da ¿/FCert IZ Ia. 

4 Abstraction-Carrying Code with Reduced Certiñeates 

The key observation in order to reduce the size of certiñeates is that certain 
entries in a certiñcate may be irrelevant, in the sense that the checker is able 
to reproduce them by itself in a single pass. The notion of relevance is directly 
related to the idea of recomputation in the program analysis graph. Intuitively, 
given an entry in the answer table A : CP i—> AP, its ñxpoint may have been 
computed in several iterations from ±, APo, AP\,... until AP. For each change 
in the answer, an event updated (A : CP) is generated during the analysis. The 
above entry is relevant in a certiñcate (under some strategy) when its updates 
forcé the recomputation of other ares in the graph which depend on A : CP 
(Le., there is a dependeney from it in the table). Thus, unless A : CP i—> AP is 
included in the (reduced) certiñcate, a single-pass checker which uses the same 
strategy as the code producer will not be able to validate the certiñcate. 

4.1 The Notion of Reduced Certifícate 

According to the above intuition, we are interested in determining when an entry 
in the answer table has been "updated" during the analysis and such changes 



affect other entries. However, there are two special types of updated events which 
can be considered "irrelevant". The ñrst one is called a redundant update and 
corresponds to the kind of updates which forcé a redundant computation. We 
write DAT\A-.CP to denote the set of ares of the form H : CP0 => [CP^B : CP2 

in the current dependeney are table such tha t they depend on A : CP with 
A : CP = (B : CPz)a for some renaming a. 

Def in i t ion 2 ( redundant u p d a t e ) . Let P <G Prog, Sa <G AAtom and Í2 <G 
QHS. We say that an event updated .̂A : CP) which appears in the event queue 
during the analysis of P for Sa is redundant w. r. t. Í2 if when it is generated, 
DAT\A..CP=%. 

In the following section we propose a slight modiñeation to the analysis algorithm 
in which redundant updates are never introduced in the priority queue, and thus 
they never enforce redundant recomputation. The proof of correetness for this 
modiñeation can be found in [1]. 

The second type of updates which can be considered irrelevant are initial 
updates which, under certain circumstances, are generated in the ñrst pass over 
an are. In particular, we do not take into account updated events which are 
generated when the answer table contains ± for the updated entry. Note tha t 
this case still corresponds to the ñrst traversal of any are and should not be 
considered as a reprocessing. 

Def in i t ion 3 ( init ial u p d a t e ) . In the conditions of Def. 2, we say that an 
event updated (A : CP) which appears in the event queue during the analysis 
of P for Sa is initial for Í2 if, when it is generated, the answer table contains 
A:CP^ ±. 

Initial updates do not oceur in certain very optimized algorithms, like the one 
in [19]. However, they are necessary in order to model generic graph traversal 
strategies. In particular, they are intended to resume ares whose evaluation has 
been suspended,. 

Def in i t ion 4 (relevant u p d a t e ) . In the conditions of Def. 2, we say that an 
event updated (A : CP) is relevant iff it is not initial ñor redundant. 

The key idea is tha t those answer pat terns whose computation has introduced 
relevant updates should be available in the certiñeate. 

Def in i t ion 5 (relevant e n t r y ) . In the conditions of Def. 2 we say that the 
entry A : CP i—> AP in the answer table is relevant for Í2 iff there has been at 
least one relevant event updated (A : CP) during the analysis of P for Sa. 

The notion of reduced certifícate allows us to remove irrelevant entries from the 
answer table and produce a smaller certiñeate which can still be validated in one 
pass. 

Def in i t ion 6 ( reduced cert i f ícate) . In the conditions of Def 2, let FCert = 
ANALYZE.FfSc, Í2) for P and Sa. We define the reduced certifícate, RCert, as 
the set of relevant entries in FCert for Í2. 



Example 1. Consider the Ciao versión of procedure rec toy , taken from [21]: 

rectoy(N.M) : - N = 0, M = 0. 
rectoy(N.M) : - N l i s N- l , r e c t o y ( N l , R ) , M i s Nl+R. 

Assume the cali pa t te rn rectoy(N,M) : { N / i n t } which indicates tha t external 
calis to r e c t o y are performed with an integer valué, i n t , in the ñrst argument 
N. It holds tha t FCert = rectoy(N, M) : { N / i n t } i-> {N/ int , M/int} (the steps per­
formed by A N A L Y Z E _ F are detailed in [1]). Assume now tha t we use a strategy 
Í2 <G QHS which assigns the highest priority to redundant updates and selects 
the rules for r e c t o y in the textual order. For this strategy, the unique entry in 
FCert is not relevant as there has been no relevant updated event in the queue. 
Therefore, the reduced certiñcate for our example is empty (and, with the tech-
niques of the next section, our checker is able t o reconstruct the ñxpoint in a 
single pass from this empty certiñcate). In contrast, lightweight bytecode veriñ-
cation [21] sends, together with the program, the reduced non-empty certiñcate 
cert = ({30 i—> (e, rectoy-int-int-int-A.)}, e), which states tha t at program point 
30 the stack does not contain information (ñrst occurrence of e) ,6 and variables 
N, M and R have type int, int and A.. The need for sending this information 
is because r ec toy , implemented in Java, contains an ¿/-branch (equivalent to 
the branching for selecting one of our two clauses for rectoy). Thus cert has to 
inform the checker tha t it is possible for variable R at point 30 to be undeñned, 
if the if condition does not hold. Note tha t this program is therefore an example 
of how our approach improves on state-of-the-art P C C techniques by reducing 
the certiñcate further while still keeping the checking process one-pass. D 

4.2 G e n e r a t i o n of Cert i f icates w i t h o u t Irrelevant Entr i e s 

In this section, we proceed to instrument the analyzer of Algorithm 1 with the 
extensions necessary for producing reduced certiñcates, as deñned in Def. 6. 
The resulting analyzer A N A L Y Z E _ R is presented in Algorithm 2. It uses the 
same procedures of Algorithm 1 except for the new deñnitions of process_arc, 
add_dependent_rules and ¡nsert_answer_¡nfo. The differences with respect to the 
original deñnition are: 

1. We annotate suspended ares in the dependeney are table. A dependeney A : 
CPA => [ - ] B : CPB in the dependeney are table is said to be suspended if 
when analysing the corresponding are, the answer table did not contain an 
entry for B : CPg or it contained A. as answer. Suspended ares are marked in 
LIO of function process_arc. A not suspended are in the dependeney are table 
will be named relevant. Suspended ares do not cause reprocessing in the sense 
tha t its continuation is not inserted in the queue (see L18 in Algorithm 1). 
These suspended ares are processed when an updated event (possibly initial) 
for B : CPB is extracted from the queue. 

6 The second occurrence of e indicates that there are no backwards jumps. 



2. We count the number of relevant updates for each cali pattern. To do this, 
we associate with each entry in the answer table a new ñeld "it" whose 
purpose is to identify relevant entries. Concretely, u indicates the number of 
updated events processed for the entry. u is initialized when the (unique and 
ñrst) initial updated event occurs for a cali pat tern. The initialization of u 
is different for redundant and initial updates as explained in the next point. 
When the analysis ñnishes, if u > 1, we know tha t at least one reprocessing 
has occurred and the entry is thus relevant. The essential point to note is 
tha t u has to be increased when the event is actually extracted from the 
queue (L14) and not when it is introduced in it (L26). The reason for this 
is tha t when a non-redundant, updated event is introduced, if the priority 
queue contains an identical event, then the processing is performed only 
once. Therefore, our counter must not be increased. 

3. We do not genérate redundant updates. Our algorithm does not introduce 
redundant updated events (L26). However, if they are initial (and redundant) 
they have to be counted as if they had been introduced and processed and, 
thus, the next update over them has to be considered always relevant. This 
effect is achieved by initializing the u-valué with a higher valué ("1" in L23) 
than for initial updates ("0" in L22). Indeed, the valué "0" just indicates tha t 
the initial updated event has been introduced in the priority queue but not 
yet processed and tha t all ares in the dependeney are table associated to it are 
suspended ares. The u valué will be increased to " 1 " either once it is extracted 
from the queue or if another updated event occurs before processing the 
initial updated event and a relevant are appears in the set of dependencies 
associated to the cali pa t te rn at hand (L27). The function relevant {Dep), 
where Dep is a set of dependencies, returns the set of relevant dependencies 
(not suspended) oceurring in Dep. This distinction is required because it 
is possible to genérate new updated events before the corresponding initial 
and non redundant updated event be processed. In such case, if the set of 
dependencies associated to the cali pat tern only contains suspended ares, 
this updated event must be considered also initial. Otherwise the updated 
event is relevant, and thus u must be increased to 1. Therefore, when this 
updated event be processed, u will be increased to "2" (relevant entry). 

In Algorithm 2, a cali (u, AP)=get_from_answer_table(^4 : CP) looks up in the 
answer table the entry for A : CP and returns its u-valué and its answer AP. 
A cali set_in_answer_table(^4(w) : CP i—> AP) replaces the entry for A : CP with 
the new one A(u) : CP i—> AP. 

P r o p o s i t i o n 1. Let P G Prog, Da G ADom, Sa G AAtom, íl G QHS. Let 
FCert be the answer table computed by ANALYZE-R^SQ, , íl) for P in Da. Then, 
an entry A(u) : CPA I—> AP G FCert is relevant iff u> 1. 

Note tha t , except for the control of relevant entries, ANALYZE_F(S'a, íí) and 
ANALYZE_R(S'a, ÍÍ) have the same behavior and they compute the same answer 
table (see [1] for details). We use function removeJrrelevant_answers which takes 



A l g o r i t h m 2 ANALYZE_R: Analyzer instrumented for Certifícate Reduction 

1: procedure PROCESS_ARC(_fffc : CP0 =>• [CPi] Bk ¿ : CP2,f¿) 
2: W := vars(Ak,Bk¡1,... ,Bk¡rík); CP3 := get Jnswer(Bfc,¡ : CP2,CPX,W,Q) 
3: if CP3 7̂  _L and i =/= nk t h en 
4: CP4 := Arestr\ct(CP3,vars(Bk}i+1)); 
5: add_event( arc(/ffc : CP0 => [CP3] Bk¡i+1 : CP4),Q) 
6: else if CP3 7̂  _L and i = nk t h e n 
7: J 4 P I : = Arestrict(CP3, vars(Hk)); insert.answer_info(ií : CP0 ^ APi, Q) 
8: if Bk i is not a constraint t h e n 
9: if' CPS = -1 t h e n 

10: add suspended(Hk : CPQ =>• [CPi] Bk,i '• CP2) to dependency are table 
11: else add Hk : CPQ =>• [CPi] Bk,i '• CP2 to dependency are table 

12: procedure ADD_DEPENDENT_RULES(A : CP, Q) 
13: (AP, u) =get_from_answer_table(A : CP) 
14: set_in_answer_table(A(w + 1) : CP i-» AP) 
15: for all are of the form Hk : CPQ =>• [CPi] Bk,i '• CP2 in graph where there 

exists renaming a s.t. A : CP = (Bk,i '• CP2)a do 
16: add_event(arc(iífc : CP0 => [CPi] Bk¡i : CP2), ü) 

17: procedure INSERT_ANSWER_INFO(_ff : CP i-> J4P, J?) 
18: ^ P 0 := lookup.answer(ií : CP, Í2) 
19: APÍ := A\ub(AP,AP0) 
20: if AP0 7̂  A P l t h e n % upd.ted required 
21: if AP0 = _L t h e n 
22: if DAT\H-.GP 7̂  0 t h e n U = 0 % non reduntl.nt initml update 

23: else U = 1 % redundant initial update 

24: else (u, _)=get_from_answer_table(ií : CP) % not mitmi update 
25: if DAT\H-.CP 7̂  0 t h e n 
26: add.event(updated(ií : CP) ) 
27: if u = 0 and relevant(PL4!T|i/:C.p) 7̂  0 t h e n w = 1 
28: set_in_answer_table(ií"(w) : CP i-» APi) 

a set of answers of the form A(u) : CP 1—> AP G FCert and returns the set of 
answers A : CP 1—> AP such tha t w > 1. 

Def in i t ion 7 (certif ier) . We define the function CERT1F1ER_R: ProgxADomx 
AAtom x A/n í x Q.ffi> >->• AC'ert, which takes P G Prog, Da G ,4P>om, 5 a G AA-
tom, Ia G AInt, Q G Qffi>\ It returns as certifícate, RCert=remove_¡rrelevant_ans-
wers(FCert), where FCert =ANALYZE_R(/S'a, f¿), ¿/FCert C Ia. 

5 Checking Reduced Certiñcates 

In the ACC framework for full certiñcates the checking algorithm [2] uses a 
speciñe graph traversal strategy, say fie • This checker has been shown to be very 
efficient but in tu rn its design is not generic with respect to this issue (in contrast 
to the analysis design). This is not problematic in the context of full certiñcates 
since, even if the certiñer uses a strategy QA which is different from Í2c, it 
is ensured tha t all valid certiñcates get validated in one pass by tha t speciñe 
checker. This result does not hold any more in the case of reduced certiñcates. 
In particular, completeness of checking is not guaranteed if QA 7̂  &c- This 



occurs because though the answer table is identical for all strategies, the subset 
of redundant entries depends on the particular strategy used. The problem is 
tha t , if there is an entry A : CP i—> AP in FCert such tha t it is relevant w.r.t. 
fie but it is not w.r.t. ÜA, then a single pass checker will fail to validate the 
RCert generated using Í2A- Therefore, it is essential in this context to design 
generic checkers which are not tied to a particular graph traversal strategy. 
Upon agreeing on the appropriate parameters ,7 the consumer uses the particular 
instance of the generic checker resulting from application of such parameters. 

It should be noted tha t the design of generic checkers is also relevant in light 
of current t rends in veriñed analyzers (e.g., [11, 6]), which could be transferred di-
rectly to the checking end. In particular, since the design of the checking process 
is generic, it becomes feasible in ACC to use automatic program transformers to 
specialize a certiñed (speciñe) analysis algorithm in order to obtain a certiñed 
checker with the same strategy while preserving correetness and completeness. 

The following deñnition presents a generic checker for validating reduced 
certiñeates. In addition to the genericity issue discussed above, an important 
difference with the checker for full certiñeates [2] is tha t there are certain entries 
which are not available in the certiñeate and tha t we want to reconstruct and 
output in checking. The reason for this is tha t the safety policy has to be tested 
w.r.t. the full answer table -Equat ion (2). Therefore, the checker must recon­
struct, from RCert, the answer table returned by A N A L Y Z E _ F , FCert, in order to 
test for adherence to the safety policy -Equat ion (4). Note tha t reconstructing 
the answer table does not add any additional cost compared to the checker in 
[2], since the full answer table also has t o be created in [2]. 

Def in i t ion 8 (checker for reduced cert i f icates) . Function C H E C K I N G _ R is 
defined as function ANALYZE_R with the following modifications: 

1. It receives RCert as an additional input parameter. 
2. It may fail to produce an answer table. In that case it issues an Error. 
3. Function insert_answerJnfo is replaced by the new one in Algorithm 3. 

Function C H E C K E R _ R takes P G Prog, Da G ADom, Sa G AAtom, Í2 G QHS, 
RCert G ACert and returns the result of C H E C K I N G - R ( S a , Í2, RCert) for P in 
Da. 

Let us briefly explain the differences between Algorithms 2 and 3. First, the 
checker has to detect (and issue) two sources of errors: 

a) The answer in the certiñeate is more precise than the one obtained by the 
checker (L4). This is the traditional error in ACC and means tha t the cer­
tifícate and program at hand do not correspond to each other. 

7 In a particular application of our framework, we expect that the graph traversal 
strategy is agreed a priori between consumer and producer. But, if necessary (e.g., 
the consumer does not implement this strategy), then it could be sent along with 
the transmitted package. 



A l g o r i t h m 3 Generic Checker for Reduced Certiñcates C H E C K I N G _ R 

1: procedure INSERT_ANSWER_INFO(_ff : CP i-> AP, Q) 
2: AP0 := lookup_answer(ií : CP, Í2); APX : = A\ub(AP, AP0) 
3: (IsIn,AP')=look_fixpoint(ií : CP,RCert) 
4: if Isln and A\ub(AP, AP1) ^ AP' then return Error x,,,.,.»^,) 
5: if APo =/= APl theil % updated roquirod 
6: i f AP0 = _L t h e n 
7: if DAT\H..Cp ^9 then u = 0; add_event(updated(H : CP), Q) 
8: else u = 1 
9: else (u, _)=get_from_answer_table(ií : CP) 

10: if DAT\H-.GP + 0 and (u = 1 or (u = 0 and relevant(DAT\H-.cp) + 
then return Error % error of tyPo b) 

11: if Isln and AP0 = _L then APi = A P ' 
12: set.in.answer_table(ií(w) : CP ^ AP!) 

13: 
14: 
15: 
16: 

function LOOK_FIXPOINT(A : CP,RCert) 
if 3 a renaming a such that a(A : CP t-^ AP) G RCert then 

return (True,a^1 (AP)) 
else return (False,_L) 

b) Recomputation is required. This should not occur during checking, i.e., only 
initial updates should be generated (L7) by the checker.8 This second type of 
error corresponds to situations in which a relevant update is needed in order 
to obtain an answer (it cannot be obtained in one pass). This is detected in 
LIO prior to introducing the (non redundant) update if either u is already 1 
or u = 0 but its associated dependencies contain a relevant are. 

The second difference is tha t the entries A : CP i—> AP' stored in RCert have to 
be added to the answer table, after the initial updated event for A : CP oceurs, 
in order to detect errors of type a) above. In particular, L l l and L12 add the 
ñxpoint AP' stored in RCert to the answer table together with the corresponding 
u-valué (same valué as in Algorithm 2). 

The following theorem ensures tha t if C H E C K E R _ R validates a certiñeate (i.e., 
it does not return Error), then the re-constructed answer table is a ñxpoint. This 
implies tha t any certiñeate which gets validated by the checker is indeed a valid 
one. 

T h e o r e m 1 (corree tness ) . Let P <G Prog, Da <G ADom, Sa <G A Atora, 
Ia G AInt and Í2A,Í2C G QHS. Let FCert= C E R T I F I E R _ F ( / P , Da,Sa,Ia, Í2A) and 
RCert= C E R T I F I E R _ R ( / P , Da,Sa, Ia,ÍÍA)- If C H E C K E R _ R ( / P , Da,Sa,Ia, RCert, 
Í2c) does not issue an Error, then it returns FCert. 

The following theorem (completeness) provides sufficient conditions under which 
a checker is guaranteed to validate reduced certiñcates which are actually valid. 

T h e o r e m 2 ( c o m p l e t e n e s s ) . Let P G Prog, Da G ADom, Sa G AAtom, Ia G 

AInt and Í¿A G QHS. Let FCert = C E R T I F I E R _ F ( / P , Da,Sa,Ia, Í¿A) and RCertQA 

8 Initial updates are not needed in the particular instance of the checker of [2] because 
the strategy is fixed. They are needed to model a generic checker though. 



Program 
aiakl 
bid 
browse 
deriv 
grammar 
hanoiapp 
occur 
progeom 
qsortapp 
query 
rdtok 
rectoy 
serialize 
zebra 

Overall 

Size 

Source 
1555 
4945 
2589 

957 
1598 
1172 
1367 
1619 
664 

2090 
13704 

154 
987 

2284 

Certiñcate Size 

FCert 
3090 
5939 
1661 
288 

1259 
2325 
1098 
2148 
2355 

531 
6533 

167 
1779 
4058 

RCert 
1616 
883 
941 
288 
40 

880 
666 

40 
650 

40 
2659 

40 
1129 

40 

F / R 

1.912 
6.726 
1.765 
1.000 

31.475 
2.642 
1.649 

53.700 
3.623 

13.275 
2.457 
4.175 
1.576 

101.450 

3.35 

Checking Time 

CF 

85 
46 
18 
50 
15 
30 
20 
20 
20 
18 
57 

8 
27 

123 

CR 

86 
49 
20 
28 
14 
28 
19 
15 
21 
12 
58 

8 
27 

125 

CF/CR 

0.991 
0.943 
0.929 
1.806 
1.042 
1.049 
1.085 
1.351 
0.990 
1.436 
0.986 
1.079 
1.022 
0.979 

1.06 

Table 1. Size of Reduced Certiñcates and Checking Time 

= CERTlFlER_R('P,Da,S
,
Q,,.rQ,,J2A,'- Let f2c € QHS be such that RCertfic = 

CERTIFIER_R(/P,Da, Sa,Ia,í2c) andRCertÜA D RCertfic. Then, CHECKER_R( /P, 

Da,Sa,Ia, RCertf¡A,ílc) returns FCert and does not issue an Error. 

Obviously, if fie = ^A then the checker is guaranteed to be complete. Addition-
ally, a checker using a different strategy fie is als° guaranteed to be complete as 
long as the certiñcate reduced w.r.t fie is equal to or smaller than the certiñcate 
reduced w.r.t f¿A- Furthermore, if the certiñcate used is full, the checker is com­
plete for any strategy. Note that if RCertQA ~J) RCertfic, CHECKER_R with the 
strategy fie niay fail to validate RCer t^ , which is indeed valid for the program 
under f¿A-

6 Discussion and Experimental Evaluation 

As we have illustrated throughout the paper, the gain of the reduction is di-
rectly related to the number of updates (or iterations) performed during analysis. 
Clearly, depending on the graph traversal strategy used, different instances of the 
generic analyzer will genérate reduced certiñcates of different sizes. Signiñcant 
and successful efforts have been made during recent years towards improving 
the efficieney of analysis. The most optimized analyzers actually aim at reduc-
ing the number of updates necessary to reach the ñnal ñxpoint [19]. Interestingly, 
our framework greatly beneñts from all these ad van ees, since the more efficient 
analysis is, the smaller the corresponding reduced certiñcates are. We have im-
plemented a generator and a checker of reduced certiñcates in CiaoPP. Both the 
analysis and checker use the optimized depth-ñrst new-calling QHS of [19]. 



In Table 1 we study two crucial points for the practicality of our proposal: the 
size of the reduced vs. full certiñcates and the relative efficiency of checking re­
duced certiñcates. As mentioned before, the algorithms are parametric w.r.t. the 
abstract domain. In our experiments we use the sharing+freeness [15] abstract 
domain, tha t is very useful for reasoning about instantiation errors, a crucial 
aspect for the safety of logic programs. The system is implemented in Ciao 1.13 
[5] with compilation to bytecode. The experiments have been performed on a 
Pentium 4 (Xeon) at 2 Ghz and 4 Gb RAM, running GNU Linux FC-2, 2.6.9. 

The set of benchmarks used is the same as in [10,2], where they are de-
scribed in more detail. The column S o u r c e shows the size in bytes of the source 
code. The size in bytes of the certiñcates is showed in the next set of columns. 
F C e r t and R C e r t contain the size of the full and reduced certiñcate, respec-
tively, for each benchmark and they are compared in column ( F / R ) . Our re-
sults show tha t the reduction in size is very signiñcant in all cases. It ranges 
from 101.45 in zebra (RCert is indeed empty - t h e size of an empty certiñcate is, 
in this case, 40 bytes since it includes information about the abstract domain 
used for generating the cer t iñcate- whereas FCert is 4058) to 1 for deriv (both 
certiñcates have the same size). The ñnal par t of the table compares the check­
ing t ime both when full and reduced certiñcates are used. Execution times are 
given in milliseconds and measure runtime. They are computed as the arithmetic 
mean of ñve runs. For each benchmark, Cp and Cj ¡ are the times for executing 
C H E C K E R _ F and C H E C K E R _ R , respectively. The column C F / C ñ compares both 
checking times. It can be seen tha t the efficiency of C H E C K E R _ R is very similar 
to tha t of C H E C K E R _ F in most cases. The last row (Overall) summarizes the 
results for the different benchmarks using a weighted mean, where the weight is 
the actual checking time for each benchmark. Overall, certiñcates are reduced 
by a factor of 3.35 and the checker for reduced certiñcates is slightly faster, with 
an overall speedup of 1.06. 
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