Flow and fracture behaviour of high performance alloys

Erice Echávarri, Borja (2012). Flow and fracture behaviour of high performance alloys. Thesis (Doctoral), E.T.S.I. Caminos, Canales y Puertos (UPM). https://doi.org/10.20868/UPM.thesis.14461.


Title: Flow and fracture behaviour of high performance alloys
  • Erice Echávarri, Borja
  • Gálvez Díaz-Rubio, Francisco
Item Type: Thesis (Doctoral)
Read date: 2012
Faculty: E.T.S.I. Caminos, Canales y Puertos (UPM)
Department: Ciencia de los Materiales
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of Borja_Erice_Echavarri.pdf]
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (8MB) | Preview


Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine.
A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests.
As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated.
A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results.
A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.

More information

Item ID: 14461
DC Identifier: https://oa.upm.es/14461/
OAI Identifier: oai:oa.upm.es:14461
DOI: 10.20868/UPM.thesis.14461
Deposited by: Biblioteca ETSI Caminos
Deposited on: 13 Feb 2013 07:37
Last Modified: 26 Sep 2022 09:39
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM