
R e c o m p u t a t i o n based Implementa t ions of A n d - O r Paral le l Pro log

Gopal Gupta f
Department of Computer Science

Box 30001, Dept. 3CU,
New México State University
Las Cruces, NM 88003-0001

guptaOnmsu.edu

M a n u e l V . Hermeneg i ldo
Facultad de Informática

Universidad Politécnica de Madrid
28660-Boadilla del Monte, Madrid, SPAIN

herme@fi.upm.es

Abs trac t

We argüe that in order to exploit both Independent And- and Or-parallelism in Pro
log programs there is advantage in recomputing some of the independent goals, as opposed
to all their solutions being reused. We present an abstract model, called the Composition-
Tree, for representing and-or parallelism in Prolog Programs. The Composition-tree
closely mirrors sequential Prolog execution by recomputing some independent goals rather
than fully re-using them. We also outline two environment representation techniques for
And-Or parallel execution of full Prolog based on the Composition-tree model abstrac-
tion. We argüe that these techniques have advantages over earlier proposals for exploiting
and-or parallelism in Prolog.

1. Introduct ion

One of the features of logic programming languages that make them attractive is
that they allow implicit parallel execution of programs. There are three main forms
of parallelism present in logic programs: or-parallelism, Independent And-parallelism
and Dependent and-parallelism. In this paper we restrict ourselves to Or-parallelism
and Independent and-parallelism. There have been numerous proposals for exploiting
or-parallelism in logic programs [AK90, HC87, LW90, W84, W87, etc.]t and quite a
few for exploiting independent and-parallelism [H86, LK88, etc.]. Models have also been
proposed to exploit both or-parallelism and independent and-parallelism in a single frame-
work [BK88, GJ89, RK89]. It is the latter aspect of combining independent and- and
or-parallelism that this paper addresses.

One aspect which most models that have been proposed (and some implemented)
so far for combining or-parallelism and independent and-parallelism have in common is
that they have either considered only puré logic programs (puré Prolog), e.g. [RK89,
GJ89], or, alternatively, modified the language to sepárate parts of the program that
contain extra-logical predicates (such as cuts and side-eífects) from those that contain

mailto:herme@fi.upm.es

purely logical predicates, then allowing parallel execution only in parts containing purely
logical predicates [RS87, BK88]. In the former case practical Prolog programs cannot
be executed since most such programs use extra-logical features. The latter approach
has a number of disadvantages: first, it requires programmers to divide the program into
sequential and parallel parts themselves. As a result of this, parallelism is not exploited
completely implicitly since some programmer intervention is required. This also rules
out the possibility of taking "dusty decks" of existing Prolog programs and running them
in parallel. In addition, some parallelism may also be lost since parts of the program
that contain side-effects may also actually be the parts that contain parallelism. It
has been shown that or-parallelism and independent and-parallelism can be exploited in
full Prolog completely implicitly (for example, in the Aurora and Muse Systems [HC88,
LWH90, AK91], and in the &-Prolog system [HG90, MH89, CC89]). We argüe that the
same can be done for systems that combine independent and- and or-parallelism and that
will be one of the design objectives of the approach presented in this paper.f

The paper thus describes a general approach for combined exploitation of indepen
dent and- and or-parallelism in full Prolog. We present an abstract model of and-or
parallelism for logic programs which mirrors sequential Prolog execution more closely, es-
sentially by recomputing some independent goals (those that Prolog recomputes) rather
than re-using them, and show the advantages of this approach. Our presentation is
then two-pronged, in that we propose two alternative efficient environment representa
r o n techniques to support the model: paged binding arrays and stack copying. Using
the concept of teams of processors^, we also briefly discuss issues such as scheduling and
memory management.

The environment representation techniques proposed are extensions of techniques
designed for purely or-parallel systems—specifically the Aurora [LW90] and Muse [AK90]
systems. The method for encoding independent and-parallelism is taken from purely
independent and-parallel systems—specifically the &-Prolog system [HG90]: we use the
parallel conjunction operator "&" to signify parallel execution of the goals separated
by this operator and Conditional Graph Expressions (CGEs) [HN86,H86]§. Henee our
model can be viewed as a combination of the &>Prolog system and a purely or-parallel
system such as Aurora or Muse—in the presence of only independent and-parallelism our
model behaves exactly like &>Prolog while in the presence of only or-parallelism it behaves
exactly like the Aurora or Muse systems, depending on the environment representation
technique chosen.

The rest of the paper is organised as follows: Section 2 describes or-parallelism and
independent and-parallelism in Prolog programs. Section 3 presents arguments for favour-
ing recomputation of some independent and-parallel goals over their complete reuse.

f Due to length limitations the actual techniques for incorporating side effeets in and-or parallel
systems in order to execute full Prolog are presented in a sepárate report [GS91]. However, the model
presented in this paper has been designed with this issue in mind, i.e., having as one of the objectives
that the inclusión of side effeets be facilitated.

$ We refer to the working "agents" of the system -the "workers" of Aurora and Muse and "agents"
of &-Prolog- simply as processors, under the assumption that the term will generally represent processes
mapped onto actual processors in an actual implementation.

§ Note that CGEs and & operators can be introduced automatically in the program at compile time
[MH89a] using abstract interpretation and thus the programmer is not burdened with the parallelization
task.

Section 4 then presents an abstract model called the Composition-tree for representing
and-or parallel execution of Prolog with recomputation. Section 5 deals with environ-
ment representation issues in the Composition-tree: section 5.1 presents a comparison of
environment representation techniques based on whether there is sharing or non-sharing;
section 5.2 presents an extensión of the Binding Arrays method, an environment repre
sentation technique based on sharing; while section 5.3 presents another technique, based
on non-sharing, which employs stack-copying. Finally, section 6 presents our conclusions.
We assume that the reader is familiar to some extent with Binding Arrays [W84, W87],
the Aurora and Muse Systems [LWH90, AK90], and the &>Prolog system [HG90], as well
as with some aspects of sequential Prolog implementation.

2. Or- and Independent And-paral le l i sm

Or-parallelism arises when more than one rule defines some relation and a procedure
cali unifies with more than one rule head in that relation—the corresponding bodies can
then be executed in or-parallel fashion. Or-parallelism is thus a way of efficiently searching
for solutions to a goal, by exploring alternative solutions in parallel. It corresponds to
the parallel exploration of the branches of the proof tree. Or-parallelism has successfully
been exploited in full Prolog in the Aurora [LWH90] and the Muse [AK90] systems both
of which have shown very good speed up results over a range of problems.

Informally, Independent And-parallelism arises when more than one goal is present
in the query or in the body of a procedure, and the run-time bindings for the variables in
these goals are such that two or more goals are independent of one another. In general,
independent and-parallelism includes the parallel execution of any set of goals in a re-
solvent, provided they meet some independence condition. Independent and-parallelism
is thus a way of speeding up a problem by executing its subproblems in parallel. One
way for goals to be independent is that they don't share any variable at run-time (strict
independence [HR90]f). This can be ensured by checking that their resulting argument
terms after applying the bindings of the variables are either variable-free (i.e., ground) or
have non-intersecting sets of variables. Independent and-parallelism has been successfully
exploited in the &-Prolog system [HG90]. Independent and-parallelism is expressed in
the &>Prolog system through the parallel conjunction operator "&", which will also be
used in this paper. For syntactic brevity we will also use &>Prolog's Conditional Graph
Expressions (CGEs), which are of the form

(condition =>• goal\ 8¿ goal-i 8¿ . . . & goaln)

meaning, using the standard Prolog if-then-else construct,

(condition -^"goali 8¿ .. .8¿ goaln ; goali,..., goaln)

i.e., tha t , if condition is true, goals goal\ ... goaln are to be evaluated in parallel, oth-
erwise they are to be evaluated sequentially. The condition can obviously be any prolog
goal but is normally a conjunction of special builtins which include ground/1, which
checks whether its argument has become a ground term at run-time, or independent/2,

f There is a more general concept of independence, non-strict independence [HR90], for which the

same results (the model presented in this paper included) apply. However, the rest of the presentat ion

in this section will refer for simplicity, and without loss of generality, to strict independence.

which checks whether its two arguments are such at run-time that they don't have any
variable in common, or the constant true meaning that goal\ ... goaln can be evalu-
ated in parallel unconditionally. It is possible to genérate parallel conjunctions and or
CGEs automatically and quite successfully at compile-time using abstract interpretation
[MH89]. Thus, exploitation of independent and-parallelism in &>Prolog is completely
implicit (although user annotation is also allowed).

There have been a number of at tempts to exploit or- and independent and-parallelism
together in a single framework [GJ89, RK89, WR87, etc.], however, and as mentioned
earlier, they either don't support the full Prolog language, or require user intervention.
Also, in general these systems advócate solution sharing which, as will be argued in the
following section, stands in the way of supporting full Prolog.

3. R e c o m p u t a t i o n vs Reuse

In the presence of both and- and or-parallelism in logic programs, it is possible to
avoid recomputing certain goals. This has been termed as solution sharing [GJ89, G91a].
For example, consider two independent goals a(X) , b(Y), each of which has múltiple
solutions. Assuming that all solutions to the program are desired, the most efficient way
to execute this goal would be to execute a and b in their entirety and combine their
solutions (possibly incrementally) through a join [BK88, GJ89, RK89]. However, to solve
the above goal in this way one needs to be sure that the set of solutions for a and b are
static (i.e., if either goal is executed múltiple times, then each invocation produces an
identical set of solutions). Unfortunately, this can hold true only if clauses for a and b
are puré logic programs. If side-effects are present (as is usually the case with Prolog
programs), then the set of solutions for these goals may not be static. For example,
consider the case where, within b, the valué of a variable is read from the standard input
and then some action taken which depends on the valué read. The solutions for b may
be different for every invocation of b (where each invocation corresponds to a different
solution of a) , even if the goal is completely independent of the others. Henee solution
sharing would yield wrong results in such a case. The simple solution of sequentializing
such and-parallel computations results in loss of too much and-parallelism, because if
a(X) , b(Y) falls in the scope of some other goal, which is being executed in and-parallel,
then that goal has to be sequentialized too, and we have to carry on this sequentialization
process right up to the top level query. If, however, the goals are recomputed then this
sequentialization can be avoided, and parallelism exploited even in the presence of cuts
and side-effects [GS91].

Henee, there is a strong argument for recomputing non-deterministic and-parallel
goals, especially, if they are not puré, and even more so if we want to support Prolog as
the user languagef. Additionally, recent simulations of and-or parallelism [SH91] show
that typical Prolog programs perform very little recomputation, thus providing further
evidence that the amount of computation saved by a system which avoids recomputation
may be quite small in practice. Presumably this behaviour is due to the fact that Prolog
programmers, aware of the selection and computation rules of Prolog, order literals in

f There is a third possibility as well: to recompute those independent and-parallel goals that have
side-effects and share those that don't. Since the techniques for implementing solution sharing are in the
literature and techniques for implementing solution recomputation are presented herein such an approach
would represent a -perhaps non-trivial- combination of the given methods.

ways which result in efficient search which minimises the recomputation of goals. Note
that the use of full or partial recomputation can never produce any slowdown with respect
to Prolog since Prolog itself uses full recomputation.

Recomputation of independent goals was first proposed in the context of &>Prolog4.
It is obviously also used in Aurora and Muse (since, performing no goal independence
analysis, no possibility of sharing arises) and has made these three systems quite capable
of supporting full Prolog. Recomputation in the context of and-or parallelism has also
been proposed in [SH91] §. The argument there was basically one of ease of simulation and,
it was argued, of implementation (being a simulation study no precise implementation
approach was given). Here we add the important argument of being able to support
full Prolog, provide an abstract representation of the corresponding execution tree, and
outline two efficient implementation approaches.

4. A n d - O r Compos i t i on Tree

The most common way to express and- and or-parallelism in logic programs is
through the traditional concept of and-or trees, i.e. trees consisting of or-nodes and
and-nodes. Or-nodes represent múltiple clause heads matching a goal while and-nodes
represent múltiple subgoals in the body of a clause being executed in and-parallel. Since
in the model presented herein we are representing and-parallelism via parallel conjunc-
tions, our and-nodes will represent such conjunctions. Thus, given a clause q : - (t r u e
=> a & b) , and assuming that a and b have 3 solutions each (to be executed in or-parallel
form) and the query is ? - q, then the corresponding and-or tree would appear as shown
in figure 1.

& b

Key:

• Choice point

Figure 1: And-Or Tree

One problem with such a traditional and-or tree is that bindings made by different
alternatives of a are not visible to different alternatives of b, and vice-versa, and henee the

t In the case of &-Prolog there are even further arguments in favour of recomputat ion, related to

management of a single binding environment and memory economy.

§ The idea of recomputat ion is referred to as "or-under-and" in [SH91].

correct environment has to be created before the continuation goal of the parallel conjunc-
tion can be executed. Creation of the proper environments requires a global operation,
for example, Binding Array loading'm AO-WAM [GJ89, G91a], the complex dereferencing
scheme of PEPSys [BK88], or the "global forking" operation of the Extended Andorra
Model [W90]. To eliminate this possible source of overhead in our model, we extend the
traditional and-or tree so that the various or-parallel environments that simultaneously
exist are always sepárate.

The extensión essentially uses the idea of recomputing independent goals of a parallel
conjunction of &>Prolog [HG90] (and Prolog!). Thus, for every alternative of a, the goal
b is computed in its entirety. Each sepárate combination of a and b is represented
by what we term as a composition node (c-node for brevity). Thus, each composition
node in the tree corresponds to a different solution for the parallel conjunction, i.e., a
different "continuation". Thus the extended tree, called the Composition-tree (C-tree for
brevity), for the above query might appear as shown in figure 2—for each alternative of
the and-parallel goal a, goal b is entirely recomputed (in fact, the tree could contain up
to 9 c-nodes, one for each combination of solutions of a and b). To represent the fact
that a parallel conjunction can have múltiple solutions we add a branch point (choice
point) before the different composition nodes. Note that c-nodes and branch points serve
purposes very similar to the Parcall frames and markers of the RAP-WAM [H86, HG90].
The C-tree can represent or- and independent and-parallelism quite naturally—execution
of goals in a c-node gives rise to independent and-parallelism while parallel execution of
untried alternatives gives rise to or-parallelism.f.

b l

Key:

•

Choice point

Share Node

Composition Node

Figure 2: Composition Tree

Notice the topological similarity of the C-tree with the purely or-parallel tree shown

f In fact, a graphical tool capable of representing this tree has shown itself to be quite useful for

implementors and users of independent and- and or-parallel systems [CG91].

in figure 3 for the program above. Essentially, branches that are "shared" in the purely
or-parallel tree (i.e. that are "common", even though different binding environments may
still have to be maintained -we will refer to such branches and regions for simplicity simply
as "shared") are also shared in the C-tree. This sharing is represented by means of a share-
node, which has a pointer to the shared branch and a pointer to the composition node
where that branch is needed (figure 2). Due to sharing the subtrees of some independent
and-parallel goals maybe spread out across different composition nodes. Thus, the subtree
of goal a is spread out over c-nodes C l , C2 and C3 in the C-tree of figure 2, the total
amount of program-related work being essentially maintained.

^ » indicates end
of a's branch

Figure 3: Or-Parallel Tree

4.1 A n d - O r Paral le l i sm & Teams of Processors

We will present some of the implementation isuues from the point of view of extending
an or-parallel system to support independent and-parallelism. When a purely or-parallel
model is extended to exploit independent and-parallelism then the following problem
arises: at the end of independent and-parallel computation, all participating processors
should see all the bindings created by each other. However, this is completely opposite to
what is needed for or-parallelism where processors working in or-parallel should not see
the (conditional) bindings created by each other. Thus, the requirements of or-parallelism
and independent and-parallelism seem anti-thetical to each other. The solutions that
have been proposed range from updating the environment at the time independent and-
parallel computations are combined [RK89, GJ89] to having a complex dereferencing
scheme [BK88]. All of these operations have their cost.

We contend that this cost can be eliminated by organising the processors into
teams. Independent and-parallelism is exploited among processors within a team while

or-parallelism is exploited among teams. Thus a processor within a team would behave
like a processor in a purely and-parallel system while all the processors in a given team
would collectively behave like a processor in a purely or-parallel system. This entails
that all processors within each team share the data structures that are used to maintain
the sepárate or-parallel environments. For example, if binding arrays are being used to
represent múltiple or-parallel environments, then only one binding array should exist per
team, so that the whole environment is visible to each member processor of the team. In
copying is used, then processors in the team share the copy. Note that in the limit case
there will be only one processor per team. Also note that despite the team arrangement
a processor is free to migrate to another team as long as it is not the only one left in the
team. Although a fixed assignment of processors to teams is possible a flexible scheme
appears preferable. This will be discussed in more detail in section 4.3. The concept of
teams of processors has been successfully used in the Andorra-I system [SW91], which
extends an or-parallel system to accommodate dependent and-parallelism.

4.2 . C-tree & A n d - O r Paral le l i sm

The concept of organising processors into teams also meshes very well with C-trees.
A team can work on a c-node in the C-tree—each of its member processors working on
one of the independent and-parallel goal in that c-node. We illustrate this by means of
an example. Consider the query corresponding to the and-or tree of figure 1. Suppose
we have 6 processors P l , P2, . . . , P6, grouped into 3 teams of 2 processors each. Let us
suppose P l and P2 are in team 1, P3 and P4 in team 2, and P5 and P6 in team 3. We
illustrate how the C-tree shown in figure 2 would be created.

Execution commences by processor P l of team 1 picking up the query q and executing
it. Execution continúes like normal sequential execution until the parallel conjunction is
encountered, at which point a choice point node is created to keep track of the information
about the different solutions that the parallel conjunction might genérate. A c-node is
then created (node C l in figure 2). The parallel conjunction consists of two and-parallel
goals a and b, of which a is picked up by processor P l , while b is made available for
and-parallel execution. The goal b is subsequently picked up by processor P2, teammate
of processor P l . Processor P l and P2 execute the parallel conjunction in and-parallel
producing solutions a l and b l respectively. In the process they leave choice points behind.
Since we allow or-parallelism below and-parallel goals, these untried alternatives can be
processed in or-parallel by other teams. Thus the second team, consisting of P3 and P4
picks up the untried alternative corresponding to a2, and the third team, consisting of P5
and P6, picks up the untried alternative corresponding to a3 . Both these teams créate a
new c-node, and restart the execution of and-parallel goal b (the goal to the right of goal
a): the first processor in each team (P3 and P5, respectively) executes the alternative
for a, while the second processor in each team (P4 and P6, respectively) executes the
restarted goal b. Thus, there are 3 copies of b executing, one for each alternative of a.
Note that the nodes in the subtree of a, between c-node C l and the choice points from
where untried alternatives were picked, are "shared" among different teams (in the same
sense as the nodes above the parallel conjunction are—different binding environments
still have to be maintained).

Since there are only three teams, the untried alternatives of b have to be executed
by backtracking. In the C-tree, backtracking always takes place from the right to mimic
Prolog's behaviour—goals to the right are completely explored before a processor can

backtrack inside a goal to the left. Thus, if we had only one team with 2 processors, then
only one composition node would actually need to be created, and all solutions would be
found via backtracking, exactly as in &-Prolog, where only one copy of the Parcall frame
exists [H86, HG90]. On the other hand if we had 5 teams of 2 processors each, then the
C-tree could appear as shown in fig 4. In figure 4, the 2 extra teams steal the untried
alternatives of goal b in c-node C3, This results in 2 new c-nodes being created, C4 and
C5 and the subtree of goal b in c-node C3 being spread across c-nodes C3, C4 and C5.
The topologically equivalent purely or-parallel tree of this C-tree is still the one shown in
figure 3. The most important point to note is that new c-nodes get created only if there
are resources to execute that c-node in parallel. Thus, the number of c-nodes in a C-tree
can vary depending on the availability of processors.

pomt -j-̂ g composition-nodes Cl, C2 and C3 are created one each
^ i for the three alternatives for and-parallel goal a. C4 and C5

are created when two of the alternatives from the subtree of
| | Composition Node and-parallel goal b in composition node C3 are picked by

others. The equivalent purely or-parallel tree is shown in fig 2.

Figure 4: C-tree for 5 Teams

It might appear that intelligent backtracking, that accompanies independent and-
parallelism in &>Prolog, is absent in our abstract and-or parallel C-tree model. This is
because if b were to completely fail, then this failure will be replicated in each of the
three copies of b. We can incorpórate intelligent backtracking by stipulating that an
untried alternative be stolen from a choice point, which falls in the scope of a parallel
conjunction, only after at least one solution has been found for each goal in that parallel
conjunction. Thus, c-nodes C2, C3, C4 and C5 (fig 4) will be created only after the first
team (consisting of P l and P2) succeeds in finding solutions a l and b l respectively. In
this situation if b were to fail, then the c-node C l will fail, resulting in the failure of the
whole parallel conjunction.

4.3 . Processor Schedul ing

Since our abstract model of C-trees is dependent upon the number of processors
available, some of the processor scheduling issues can be determined at an abstract level,
without going into the details of a concrete realization of the C-trees. As mentioned
earlier, teams of processors are used to carry out or-parallel work while individual pro
cessors within a team perform and-parallel work. Since and-parallel work is shared within
a team, a processor can in principie steal and-parallel work only from members of its own
team. Or-parallel work is shared at the level of teams, thus only an idle team can steal an
untried alternative from a choice point. An idle processor will first look for and-parallel
work in its own team. If no and-parallel work is found, it can decide to migrate to another

team where there is work, provided it is not the last remaining processor in that team.
If no such team exists it can start a new team of its own, perhaps with idle processors of
other teams, and the new team can steal or-parallel work. One has to carefully balance
the number of teams and the number of processors in each team, to fully exploit all the
and- and or-parallelism available in a given Prolog programf.

5. Env ironment Representa t ion

So far we have described and-or parallel execution with recomputation at an ab-
stract level. We have not addressed the crucial problem of environment representation
in the C-tree. In this section we discuss how to extend the Binding Arrays (BA) method
[W84,W87] and the Stack-copying [AK90] methods to solve this problem. These exten-
sions enable a team of processors to share a single BA without wasting too much space.

5.1 Sharing vs N o n - S h a r i n g

In an earlier paper [GJ90] we argued that environment representation schemes that
have constant-time task creation and constant-time access to variables, but non-constant
time task-switching, are superior to those methods which have non-constant time task
creation or non-constant time variable-access. The reason being that the number of task-
creation operations and the number of variable-access operations are dependent on the
program, while the number of task-switches can be controlled by the implementor by
carefully designing the work-scheduler.

The schemes that have constant-time task creation and variable-access can be further
subdivided into those that physically share the execution tree, such as Binding Arrays
scheme [W84, W87, LW90] and Versions Vectors [HC87] scheme, and those that do
not, such as MUSE [AK90] and Delphi [CA88]. Both these kinds of schemes have their
advantages. The advantage of non-sharing schemes such as Muse and Delphi are that
less synchronization is needed in general since each processor has its own copy of the
tree and thus there is less parallel overhead [AK90]. This also means that they can
be implemented on non-shared memory machines more efficiently. However, operations
that may require synchronization and voluntary suspensión such as side effects, cuts
and speculative scheduling are more overhead prone to implement. When an or-parallel
system reaches a side effect which is in a non-leftmost or-branch, it has two choices: (i)
it can suspend the current branch and switch to some other node where there is work
available, the suspended branch would be woken up when it becomes leftmost; or (ii) it
can busy-wait at the current branch until it becomes left most. In case (i) an or-parallel
system that does not share the execution tree, such as Muse, will have to save its current
execution stack in a scratch memory-area since switching to a new node means that the
current stack would be overwritten due to copying of the branches corresponding to the
new node. Even if modern sophisticated multiprocessor Operating Systems may allow
some memory-saving optimizations, a substantial memory overhead may still be presentf.
The same holds for case (ii), where a modern OS may manage to avoid busy-waiting, but
at the cost of extra memory.

f Some of the 'flexible scheduling' techniques tha t have been developed for the Andorra-I system

[D91] can be directly adapted for opt imal distr ibution of or- and and-parallel work.

f Experimental results show tha t processors may voluntarily suspend as much as 10 to lOOs of times

for large sized programs [SI91].

The essential conclusión is that for some applications (those that require processors
to synchronize often due to presence of a large number of side-effects and cuts) envi-
ronment representation schemes which share the or-tree are better, and for some other
applications (those that require processors to synchronize less often) schemes which main-
tain an independent or-tree per processor are better. With this observation in mind we
have extended both types of environment representation schemes to accommodate inde
pendent and-parallelism with recomputation of goals. We first describe an extensión of
the Binding Arrays scheme, and then an extensión of the stack-copying technique. Due to
space limitations the essence of both approaches will be presented rather than specifying
them in detail as full models, which is left as future work.

5.2. E n v i r o n m e n t R e p r e s e n t a t i o n u s i n g B A s

Recall that in the binding-array method [W84, W87] an offset-counter is maintained
for each branch of the or-parallel tree for assigning offsets to conditional variables (CVs)f
that arise in that branch. The 2 main properties of the BA method for or-parallelism are
the following:

(i) The offset of a conditional variable is fixed for its entire life.

(ii) The offsets of two consecutive conditional variables in an or-branch are also consec-
utive.

The implication of these two properties is that conditional variables get allocated
space consecutively in the binding array of a given processor, resulting in optimum space
usage in the BA. This is important because a large number of conditional variables might
need to be created at runt imej .

Fig (i): Part of a C-tree Figure (ii): Optimal Space Allocation in the BA

Figure 5: BAs and Independent And-Parallelism

In the presence of independent and-parallel goals, each of which has múltiple Solu
tions, maintaining contiguity in the BA can be a problem, especially if processors are
allowed (via backtracking or or-parallelism) to search for these múltiple solutions. Con-
sider a goal with a parallel conjunction: a, (t r u e => b & c) , d. A part of its C-tree
is shown in figure 5 (i) (the figure also shows the number of conditional variables that are

f Conditional variables are variables that receive different bindings in different environments [GJ90].

$ For instance, in Aurora [LW90] about 1Mb of space is allocated for each BA.

created in different parts of the tree). If b and c are executed in independent and-parallel
by two different processors P l and P2, then assuming that both have private binding ar-
rays of their own, all the conditional variables created in branch b-bl would be allocated
space in BA of P l and those created in branch of c - c l would be allocated space in BA
of P2. Likewise conditional bindings created in b would be recorded in BA of P l and
those in c would be recorded in BA of P2. Before P l or P2 can continué with d after
finding solutions bl and e l , their binding arrays will have to be merged somehow. In
the AO-WAM [GJ89, G91a] the approach taken was that one of P l or P2 would execute
d after updating its Binding Array with conditional bindings made in the other branch
(known as the the BA loading operation). The problem with the BA loading operation
is that it acts as a sequential bottleneck which can delay the execution of d, and reduce
speedups. To get rid of the BA loading overhead we can have a common binding array for
P l and P2, so that once P l and P2 finish execution of b and c, one of them immediately
begins execution of d since all conditional bindings needed would already be there in the
common BA. This is consistent with our discussion in section 4.1 about having teams of
processors where all processors in a team would share a common binding array.

However, if processors in a team share a binding array, then backtracking can cause
inefficient usage of space, because it can créate large unused holes in the BA. This is
because processors in a team, that are working on different independent and-parallel
branches, will allocate offsets in the binding array concurrently. The exact number of
offsets needed by each branch cannot be allocated in advance in the binding array because
the number of conditional variables that will arise in a branch cannot be determined a
priori. Thus, the offsets of independent and-branches will overlap: for example, the offsets
oí ki CVs in branch b l will be intermingled with those of &2 CVs in branch e l . Due
to overlapping offsets, recovery of these offsets, when a processor backtracks, requires
tremendous book-keeping. Alternatively, if no book-keeping is done, it leads to large
amount of wasted space that becomes unusable for subsequent offsets (see [GS92, G91,
G91a] for more details).

5.2 .1 . P a g e d B ind ing Array

To solve the above problem we divide the binding array into fixed sized segments.
Each conditional variable is bound to a pair consisting of a segment number and an offset
within the segment. An auxiliary array keeps track of the mapping between the segment
number and its starting location in the binding array. Dereferencing CVs now involves
double indirection: given a conditional variable bound to {i, o), the starting address of its
segment in the BA is first found from location i of the auxiliary array, and then the valué
at offset o from that address is accessed. A set of CVs that have been allocated space
in the same logical segment (i.e. CVs which have common i) can reside in any physical
page in the BA, as long as the starting address of that physical page is recorded in the
¿th slot in the auxiliary array. Note the similarity of this scheme to memory management
using paging in Operating Systems, henee the ñame Paged Binding Array (PBA)f. Thus
a segment is identical to a page and the auxiliary array is essentially the same as a page
table. The auxiliary and the binding array are common to all the processors in a team.
From now on we will refer to the BA as the Paged Binding Array (PBA), the auxiliary
array as the Page Table (PT) , and our model of and-or parallel execution as the PBA

f Thanks to David H. D. Warren for pointing out this similarity.

modelj .

Every time execution of an and-parallel goal in a parallel conjunction is started by a
processor, or the current page in the PBA being used by that processor for allocating CVs
becomes full, a page-marker node containing a unique integer id i is pushed onto the trail-
stack. The unique integer id is obtained from a shared counter (called a p t_coun te r) .
There is one such counter per team. A new page is requested from the PBA, and the
starting address of the new page is recorded in the ¿th location of the Page Table. i is
referred to as the page number of the new page. Each processor in a team maintains an
offset-counter, which is used to assign offsets to CVs within a page. When a new page is
obtained by a processor, the offset-counter is reset. Conditional variables are bound to
the pair <i, o>, where i is the page number, and o is the valué of the offset-counter, which
indicates the offset at which the valué of the CV would be recorded in the page. Every
time a conditional variable is bound to such a pair, the offset counter o is incremented.
If the valué of o becomes greater than K, the fixed page size, a new page is requested
and new page-marker node is pushed.

A list of free pages in the PBA is maintained separately (as a linked list). When a
new page is requested, the page at the head of the list is returned. When a page is freed
by a processor, it is inserted in the free-list. The free-list is kept ordered so that pages
higher up in the PBA occur before those that are lower down. This way it is always
guaranteed that space at the top of the PBA would be used first, resulting in optimum
space usage of space in the PBA.

While selecting or-parallel work, if the untried alternative that is selected is not in
the scope of any parallel conjunction, then task-switching is more or less like in purely or-
parallel system (such as Aurora), modulo allocation/deallocation of pages in the PBA.
If, however, the untried alternative that is selected is in the and-parallel goal g of a
parallel conjunction, then the team updates its PBA with all the conditional bindings
created in the branches corresponding to goals which are to the left of g. Conditional
bindings created in g above the choice point are also installed. Goals to the right of
g are restarted and made available to other member processors in the team for and-
parallel execution. Notice that if a C-tree is folded into an or-parallel tree according
to the relationship shown in figures 2 and 3, then the behaviour of (and the number of
conditional bindings installed/deinstalled during) task switching would closely follow that
of a purely or-parallel system such as Aurora, if the same scheduling order is followed.

Note that the paged binding array technique is a generalization of the environment
representation technique of AO-WAM [GJ89, G91a], henee some of the optimizations
[GJ90a] developed for the AO-WAM, to reduce the number of conditional bindings to
installed/deinstalled during task-switching, will also apply to the PBA model. Lastly,
seniority of conditional variables, which needs to be known so that "older" variables never
point to "younger ones", can be easily determined with the help of the <i, o> pair. Older
variables will have a smaller valué of i; and if i is the same, then a smaller valué of o.

More details on Paged Binding Arrays can be found in [GS92, G91].

X A paged binding array has also been used in the ElipSys system of E C R C [VX91], but for entirely
different reasons. In ElipSys, when a choice point is reached the BA is replicated for each new branch.
To reduce the overhead of replication, the BA is paged. Pages of the BA are copied in the children
branches on demand, by using a "copy-on-write" strategy. In ElipSys, unlike our model, paging is not
necessitated by independent and-parallelism.

5.3. The Stack Copying Approach

An alternative approach to represent múltiple environments in the C-tree is to use
explicit stack-copying. Rather than sharing parts of the tree, the shared branches can
be explicitly copied, using techniques similar to those employed by the MUSE system
[AK90].

To briefly summarize the MUSE approach, whenever a processor P l wants to share
work with another processor P2 it selects an untried alternative from one of the choice
points in P2's stack. It then copies the entire stack of P2, backtracks up to that choice
point to undo all the conditional bindings made below that choice point, and then con
tinúes with the execution of the untried alternative. In this approach, provided there is a
mechanism for copying stacks, the only cells that need to be shared during execution are
those corresponding to the choice points. Execution is otherwise completely independent
(modulo side-effect synchronization) in each branch and identical to sequential execution.

If we consider the presence of and-parallelism in addition to or-parallelism, then,
depending on the actual types of parallelism appearing in the program and the nesting
relation between them, a number of relevant cases can be distinguished. The simplest two
cases are of course those where the execution is purely or-parallel or purely and-parallel.
Trivially, in these situations standard MUSE and &>Prolog execution respectively applies,
modulo the memory management issues, which will be dealt with in section 5.3.2.

Of the cases when both and- and or-parallelism are present in the execution, the
simpler one represents executions where and-parallelism appears "under" or-parallelism
but not conversely (i.e. no or-parallelism appears below c-nodes). In this case, and again
modulo memory management issues, or-parallel execution can still continué as in Muse
while and-parallel execution can continué like &>Prolog (or in any other local way. The
only or-parallel branches which can be picked up appear then above any and-parallel
node in the tree. The process of picking up such branches would be identical to that
described above for MUSE.

In the presence of or-parallelism under and-parallelism the situation becomes slightly
more complicated. In that case, an important issue is carefully deciding which portions
of the stacks to copy. When an untried alternative is picked from a choice-point, the
portions that are copied are precisely those that have been labelled as "shared" in the
C-tree. Note that these will be precisely those branches that will also be copied in an
equivalent (purely or-parallel) MUSE execution. In addition, precisely those branches will
be recomputed that are also recomputed in an equivalent (purely and-parallel) &-Prolog
execution.

Consider the case when a processor selects an untried alternative from a choice point
created during execution of a goal gj in the body of a goal which occurs after a parallel
conjunction where there has been and-parallelism above the the selected alternative, but
all the forks are finished. Then not only will it have to copy all the stack segments in
the branch from the root to the parallel conjunction, but also the portions of stacks cor
responding to all the forks inside the parallel conjunction and those of the goals between
the end of the parallel conjunction and gj. All these segments have in principie to be
copied because the untried alternative may have access to variables in all of them and
may modify such variables.

On the other hand, if a processor selects an untried alternative from a choice point
created during execution of a goal <7¿ inside a parallel conjunction, then it will have to

copy all the stack segments in the branch from the root to the parallel conjunction, and
it will also have to copy the stack segments corresponding to the goals g\ .. . <?¿-i (i.e.
goals to the left). The stack segments up to the parallel conjunction need to be copied
because each different alternative within the <7¿s might produce a different binding for a
variable, X, defined in an ancestor goal of the parallel conjunction. The stack segments
corresponding to goals g\ through gi-\ have to be copied because the different alternatives
for the goals following the parallel conjunction might bind a variable defined in one of
the goals g\ ... gi-\ differently.

5.3 .1 . Execut ion w i t h Stack Copy ing

We now illustrate by means of a simple example how or-parallelism can be exploited
in non deterministic and-parallel goals through stack copying. Consider the tree shown
in figure 1 that is generated as a result of executing a query q containing the parallel
conjunction (t r u e => a(X) & b (Y)) . For the purpose of illustration we assume that
there is an unbounded number of processors, P l . . . Pn.

Execution begins with processor P l executing the top level query q. When it en-
counters the parallel conjunction, it picks the subgoal a for execution, leaving b for some
other processor. Let's assume that Processor P2 picks up goal b for execution (figure
6.(i)). As execution continúes P l finds solution a l for a, generating 2 choice points along
the way. Likewise, P2 finds solution b l for b.

Since we also allow for full or-parallelism within and-parallel goals, a processor can
steal the untried alternative in the choice point created during execution of a by P l . Let
us assume that processor P3 steals this alternative, and sets itself up for executing it. To
do so it copies the stack of processor P l up to the choice point (the copied part of the
stack is shown by the dotted line; see index at the bot tom of figure 6), simulates failure
to remove conditional bindings made below the choice point, and restarts the goals to its
right (i.e. the goal b). Processor P4 picks up the restarted goal b and finds a solution b l
for it. In the meantime, P3 finds the solution a2 for a (see figure 6.(ii)). Note that before
P3 can commence with the execution of the untried alternative and P4 can execute the
restarted goal b, they have to make sure that any conditional bindings made by P2 while
executing b have also been removed. This is done by P3 (or P4) getting a copy of the
trail stack of P2 and resetting all the variables that appear in it.

Like processor P3 , processor P5 steals the untried alternative from the second choice
point for a, copies the stack from P l and restarts b, which is picked up by processor P6.
As in MUSE, the actual choice point frame is shared to prevent the untried alternative
in the second choice point from being executed twice (once through P l and once through
P3). Eventually, P5 finds the solution a3 for a and P6 finds the solution b l for b.

