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Abstract. Automatic cost analysis of programs has been traditionally studied in 
terms of a number of concrete, predefined resources such as execution steps, time, or 
memory. However, the increasing relevance of analysis applications such as static de
bugging and/or certification of user-level properties (including for mobile code) makes 
it interesting to develop analyses for resource notions that are actually application-
dependent. This may include, for example, bytes sent or received by an application, 
number of files left open, number of SMSs sent or received, number of accesses to a 
database, money spent, energy consumption, etc. We present a fully automated anal
ysis for inferring upper bounds on the usage that a Java bytecode program makes 
of a set of application programmer-definable resources. In our context, a resource is 
defined by programmer-provided annotations which state the basic consumption that 
certain program elements make of that resource. From these definitions our analysis 
derives functions which return an upper bound on the usage that the whole program 
(and individual blocks) make of that resource for any given set of input data sizes. 
The analysis proposed is independent of the particular resource. We also present some 
experimental results from a prototype implementation of the approach covering an 
ample set of interesting resources. 

1 Introduction 

The usefulness of analyses which can infer information about the costs of computations is 
widely recognized since such information is useful in a large number of applications including 
performance debugging, verification, and resource-oriented specialization. The kinds of costs 
which have received most attention so far are related to execution steps as well as, sometimes, 
execution time or memory (see, e.g., [21,28,29,16,8,17,32] for functional languages, [30, 
7,15,34] for imperative languages, and [13,12,14] for logic languages). These and other 
types of cost analyses have been used in the context of applications such as granularity 
control in parallel and distributed computing (e.g., [23]), resource-oriented specialization 
(e.g., [10, 27]), or, more recently, certification of the resources used by mobile code (e.g., [11, 
4, 9, 2,18]). Specially in these more recent applications, the properties of interest are often 
higher-level, user-oriented, and application-dependent rather than (or, rather, in addition 
to) the predefined, more traditional costs such as steps, time, or memory. Regarding the 
object of certification, in the case of mobile code the certification and checking process is 
often performed at the bytecode level [22], since, in addition to other reasons of syntactic 
convenience, bytecode is what is most often available at the receiving (checker) end. 



We propose a fully automated framework which infers upper bounds on the usage that 
a Java bytecode program makes of application programmer-definable resources. Examples 
of such programmer-definable resources are bytes sent or received by an application over a 
socket, number of files left open, number of SMSs sent or received, number of accesses to a 
database, number of licenses consumed, monetary units spent, energy consumed, disk space 
used, and of course, execution steps (or bytecode instructions), time, or memory. In our 
context, resources are defined by programmers by means of annotations. The annotations 
defining each resource must provide for some user-selected elements corresponding to the 
bytecode program being analyzed (classes, methods, variables, etc.), a value that describes 
the cost of that element for that particular resource. These values can be constants or, more 
generally, functions of the input data sizes. The objective of our analysis is then to statically 
derive from these elementary costs an upper bound on the amount of those resources that 
the program as a whole (as well as individual blocks) will consume or provide. 

As mentioned before, most previous research in resource analysis has been done for declar
ative programming languages. In particular, our approach builds on the work of [13,12] for 
logic programs, where cost functions are inferred by solving recurrence equations derived from 
the syntactic structure of the program. Also, most previous work deals with concrete, tradi
tional resources (e.g., execution steps, time, or memory). Some recent work does deal with 
less restricted sets of resources. In [26] an automatic parametric analysis for inferring upper-
and lower-bounds (which is non-trivial because of the possibility of failure) for logic pro
grams is presented. This work shows also how to support application programmer-definable 
resources, but it is designed for Prolog and at the source code level, and thus its adaptation 
to Java bytecode is far from trivial because of issues such as virtual method invocation, 
unstructured control flow, assignment, the fact that statements are low-level bytecode in
structions, etc. In [1], a cost analysis is described that does deal with Java bytecode and is 
capable of deriving cost relations which are functions of input data sizes. However, while the 
approach proposed can conceptually be adapted to infer different resources, for each analysis 
developed the measured resource is fixed and changes in the implementation are needed to 
develop analyses for other resources. In contrast, our approach allows the application pro
grammer to define the resources through annotations in the same source language in which 
the application is written, and without changing the analyzer in any way. In addition, the 
presentations in [26,1] are more descriptive, while herein our aim is to provide a concrete 
analysis algorithm. Finally, we also provide implementation results, in contrast to [1]. 

2 Overview of the Approach 

We start by illustrating the overall approach through a working example. The Java program in 
Fig. 1 emulates the process of sending of text messages within a cell phone. The source code is 
provided here just for clarity, since the analyzer works directly on the corresponding bytecode. 
The phone (class CellPhone) receives a list of packets (SmsPacket), each one containing a 
single SMS, encodes them (Encoder), and sends them through a stream (Stream). There 
are two types of encoding: TrimEncoder, which eliminates any leading and trailing white 
spaces, and UnicodeEncoder, which converts any special character into its Unicode(\wxxxx) 
equivalent. The length of the SMS which the cell phone ultimately sends through the stream 
depends on the size of the encoded message. 



import Java . net . URLEncoder ; 
publ ic c l a s s Cel lPhone { 

SmsPacket sendSms(SmsPacket smsPk , 
Encoder enc , 
Stream stm) { 

if (smsPk != n u l l ) { 
S t r i n g newSms = e n c . f o r m a t ( smsPk . sms ) ; 
stm . send ( newSms ) ; 
smsPk . next=sendSms ( smsPk .next , enc ,stm ) ; 
smsPk . sms = newSms ; 

} 
return smsPk; 

} 
} 
c l a s s SmsPacket j 

S t r i n g sms ; 
SmsPacket next ; 

} 

i n t e r fa ce Encoder j 
S t r i n g format ( S t r i n g d a t a ) ; 

} 
c l a s s TrimEncoder implements Encoder j 

@Cost({" c e n t s " , " 0 " }) 
@Size ( " s i ze ( r e t ) < = s i z e ( s )" ) 
publ ic S t r i n g f o r m a t ( S t r i n g s ){ 

return s . t r im ( ) ; 
} 

} 
c l a s s UnicodeEncoder implements Encoder j 

@Cost({" c e n t s " , " 0 " }) 
@Size(" s ize ( re t )<=6* s ize ( s )" ) 
publ ic S t r i n g f o r m a t ( S t r i n g s ){ 

return URLEncoder . encode (s ) ; 
} 

} 
a b s t r a c t c l a s s St ream { 

@Cost ( { " c e n t s " , " 2 * s i ze ( d a t a ) " } ) 
nat ive void send( S t r i n g d a t a ) ; 

} 

CellPhone.sendSms(rO,rl,r2,r3,r4,r5) 

Builtin.ne(rl,null,void) 
Builtin.gtf(rl,sms,r6) 
Encoder.format(r2, r6, rTy 
Stream.send(r3,r7,void)-
Builtin.gtf(rl,next,r8) 

-CellPhone.sendSms(rO,r8,r2,r3,r9,rlO) 
Builtin.stf(rl,next,rlO,rl_l) 
Builtin.stf(rl_l,sms,r7,r4) 
Builtin.asg(r4,r5) 

TrimEncoder ,format(r0,rl,r2) 

CellPhone.sendSms(rO,rl,r2,r3,r4,r5) 

Builtin.eq(rl,null,void) 
Builtin.asg(null,r5) 

@Cost({"cents","0"}) 

@Size("size(r2)<=size(r1)") 

java.lang.String.trim(rl,r3) 
Builtin.asg(r3,r2) 

UnicodeEncoder.format(rO,rl,r2) 

@Cost({"cents","0"}) 

@Size("size(r2)<=6*size(r1)") 

java.net.URLEncoder.encode(rl,r3) 
Builtin.asg(r3,r2) 

Fig. 1. Motivating example: Java source code and Control Flow Graph 

A resource is a fundamental component in our approach. A resource is a user-defined no
tion which associates a basic cost function with some user-selected elements (class, method, 
statement) in the program. This is expressed by adding Java annotations to the code. The 
objective of the analysis is to approximate the usage that the program makes of the re
source. In the example, the resource is the cost in cents of a dollar for sending the list of 
text messages, since we will assume for simplicity that the carrier charges are proportional 
(2 cents/character) to the number of characters sent. This domain knowledge is reflected by 
the user in the method that is ultimately responsible for the communication (Stream, send), 
by adding the annotation QCost({"cents" , "2*size(data)"}). Similarly, the formatting 
of an SMS done in any implementation of Encoder.format is free, as indicated by the 
@Cost({"cents","0")}) annotation. The analysis understands these resource usage expres
sions and uses them to infer a safe upper bound on the total usage of the program. 

Step 1: Constructing the Control Flow Graph. In the first step, the analysis translates 
the Java bytecode into an intermediate representation building a Control Flow Graph (CFG). 
Edges in the CFG connect block methods and describe the possible flows originated from 
conditional jumps, exception handling, virtual invocations, etc. A (simplified) version of the 
CFG corresponding to our code example is also shown in Fig. 1. 
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The original sendSms method has been compiled into two block methods that share the 
same signature: class where declared, name (CellPhone. sendSms), and number and type 
of the formal parameters. The bottom-most box represents the base case, in which we re
turn null, here represented as an assignment of nu l l to the return variable r^; the sibling 
corresponds to the recursive case. The virtual invocation of format has been transformed 
into a static call to a block method named Encoder .format. There are two block meth
ods which are compatible in signature with that invocation, and which serve as proxies for 
the intermediate representations of the interface implementations in TrimEncoder.format 
and UnicodeEncoder.format. Note that the resource-related annotations have been carried 
through the CFG and are thus available to the analysis. 

Step 2: Inference of Data Dependencies and Size Relationships. The algorithm 
infers in this phase size relationships between the input and the output formal parameters 
of every block method. For now, we can assume that size of (the contents of) a variable is 
the maximum number of pointers we need to traverse, starting at the variable, until nu l l is 
found. The following equations are inferred by the analysis for the two CellPhone. sendSms 
block methods : („ .„ „ 

< \ < J ° lf Sri = 0 m 
The size of the returned value rs is independent of the sizes of the input parameters this, 
enc, and stm (sro,sr2 and sr3 respectively) but not of the size sri of the list of text mes
sages smsPk (r-\ in the graph). Such size relationships are computed based on dependency 
graphs, which represent data dependencies between variables in a block, and user anno
tations if available. In the example in Fig. 1, the user indicates that the formatting in 
UnicodeEncoder results in strings that are at most six times longer than the ones received as 
input @Size("size(ret)<=6*size(s) " ) , while the trimming in TrimEncoder returns strings 
that are equal or shorter than the input (@Size("size(ret)<=size(s) ")). The equation sys
tem (1) must be approximated by a recurrence solver in order to obtain a closed form solution. 
In this case, our analysis yields the solution sizer5(sro, sri, sr2, sr3) < 3.5 x s2

r — 2.5 x sri. 

Step 3: Resource Usage Analysis. In the this phase, the analysis uses the CFG, the 
data dependencies, and the size relationships inferred in previous steps in order to infer a 
resource usage equation for each block method in the CFG and further simplify the resulting 
obtaining closed form solutions (in general, approximated -upper bounds). Therefore, the 
objective of the resource analysis is to statically derive safe upper bounds on the amount of 
resources that each of the block methods in the CFG consumes or provides. The result given 
by our analysis for the monetary cost of sending the messages (CellPhone.sendSms) is 

costsendSms(sr sr sr s r ) < { ° i f s r i = 0 
[ 1^ x sri i z -|- COStsen(lgrrriS [sro, sri 1, sr2, s r 3 ) II sri > U 

i.e., the cost is proportional to the size of the message list (smsPk in the source, r\ in the 
CFG). Again, this equation system is solved by a recurrence solver, resulting in the closed 
formula costsendSms(sro, s r i , s r 2 , sr3) < 6 x s2

ri - 6 x sri. 

3 Intermediate program representation 
Analysis of a Java bytecode program normally requires its translation into an intermedi
ate representation that is easier to manipulate. In particular, our decompilation (assisted 



by the Soot [31] tool) involves elimination of stack variables, conversion to three-address 
statements, static single assignment (SSA) transformation, and generation of a Control Flow 
Graph (CFG) tha t is ult imately the subject of analysis. The decompilation process is an evo
lution of the work presented in [25], which has been successfully used as the basis for other 
analyses [24]. Our ul t imate objective is to support the full Java language but the current 
transformation has some limitations: it does not yet support reflection, threads, or runtime 
exceptions. The following grammar describes the intermediate representation; some of the 
elements in the tuples are named so we can refer to them as node. name. 

CFG 
Block Method 
Sig 
Stmt 
Var 

BlockMethod+ 

(id :N, sig: Sig, f pa rs:Id+, an not :expr*, body :Stmt*) 
(c\ass:Type,name:Id,pars:Type+) 
(\&N,s\g:Sig,apars:(Id\C't) + ) 
(name.Id, type.Type) 

The Control Flow Graph is formed by block methods. A block method is similar to a Java 
method, with some particularities: a) if the program flow reaches it, every statement in it 
will be executed, i.e, it contains no branching; b) its signature might not be unique: the CFG 
might contain several block methods in the same class sharing the same name and formal 
parameter types; c) it always includes as formal parameters the returned value ret and, unless 
it is static, the instance self-reference this; d) for every formal parameter (input formal 
parameter) of the original Java method tha t might be modified, there is an extra formal 
parameter in the block method tha t contains its final version in the SSA transformation 
(output formal parameter) ; e) every statement in a block method is an invocation, including 
builtins (assignment asg, field dereference gt f , etc.), which are understood as block methods 
of the class B u i l t i n . 

As mentioned before, there is no branching within a block method. Instead, each con
ditional i f cond stmti e l s e stmt2 in the original program is replaced with an invocation 
and two block methods which uniquely match its signature: the first block corresponds to 
the stmt 1 branch, and the second one to stmti. To respect the semantics of the language, 
we decorate the first block method with the result of compiling cond, while we at tach cond 
to its sibling. A similar approach is used in virtual invocations, for which we introduce as 
many block methods in the graph as possible receivers of the call were in the original pro
gram. A set of block methods with the same signature sig can be retrieved by the function 
getBlocks(CFG, sig). 

Example 1. We now focus our at tention on the two block methods in Fig. 1, which are the 
result of compiling the Cel lPhone . sendSms method. Input formal parameters r n , r i , r 2 , r 3 
correspond to this, smsPk, enc, and stm, respectively. In the case of r\, the contents of its 
fields next and sms are altered by invoking the s t f (abbreviation for s e t f i e l d ) builtin block 
method. The output formal parameter r^ contains the final state of r\ after those modifica
tions. The value returned by the block methods is contained in rs- Space reasons prevent us 
from showing any type information in the CFG in Fig 1. In the case of Encoder .format, for 
example, we say tha t there are two blocks with the same signature because they are both 
defined in class Encoder, have the same name (format) and list of types of formal parameters 
{ E n c o d e r , S t r i n g , S t r i n g } . 

User specifications are written using the annotation system introduced in Java 1.5 which, 
unlike JML specifications, has the very useful characteristic of being preserved in the byte-



resourceAnalysis(Ci ; lG, res) 
CFG <- classAnalysis(CFG) 
rat <— in i t i a l i z e (C i ; l G) 
SCCs <— stronglyConnectedComponents(Ci ; lG) 
dg <— dataDependencyAnalysis(CFG, rat) 
foreach SCC e SCCs in reverse topological order 

rat <— sizeAnalysis(S'C'C', mi, CFG, dg) 
rat <— resourceAnalysis(S'C'C', res, mi, CFG) 

r e t u r n mi 
end 

Fig. 2. Generic Resource Analysis Algorithm 

code. Annotations are carried over to our CFG representation, as can be seen in Fig. 1. 
An additional advantage of using annotations is tha t they respect the semantics of the lan
guage; for example, an annotation at tached to a non private method is inherited by all the 
descendant classes. 

4 A framework for resource usage analysis 

We now describe our framework for inferring upper bounds on the usage tha t a Java bytecode 
program makes of a set of application programmer-definable resources. The algorithm in Fig 2 
takes as input a Control Flow Graph in the format described in the previous section, including 
the user annotations tha t assign elementary costs to certain graph elements for a particular 
resource. The user also indicates the set of resources to be tracked by the analysis. 

A preliminary step in our approach is a class hierarchy analysis [5, 24], aimed at simplify
ing the CFG and therefore improving overall precision. Then, another analysis is performed 
over the CFG to extract da ta dependencies, as described below. The next step is the decom
position of the CFG into its strongly-connected components. After these steps, two different 
analyses are run separately on each strongly connected component: a) the size analysis, which 
estimates parameter size relationships for each statement and output formal parameters as a 
function of the input formal parameter sizes (Sec. 4.1); and b) the actual resource analysis, 
which computes the resource usage of each block method in terms also of the input da ta sizes 
(Sec. 4.2). Each phase is dependent on the previous one. 

The data dependency analysis is a dataflow analysis tha t yields position dependency 
graphs for the block methods within a strongly connected component. Each graph G = (V,E) 
represents da ta dependencies between positions corresponding to statements in the same 
block method, including its formal parameters. Vertexes in V denote positions, and edges 
(si ,«2) € E denote tha t S2 is dependent on s i . We say tha t si is a predecessor of S2- We 
will assume a p r e d e c function that takes a position dependency graph, a statement, and 
a parameter position and returns its nearest predecessor in the graph. The following figure 
shows the position dependency graph of the TrimEncoder . format block method: 

(rO) (rl) (r2) 

TrimEncoder.format( 0 , 1 , 2 ) 

java.lang.String.trirrKOjJ. ) / 

Builtin.asg( 0 , 1 ) ^^/ 
(r3) (r2T 



sizeAnalysis(S'CC, mt, CFG, dg) genBlocksSizeRel(si#, mt, SCC, CFG, dg) 
Eqs +- 0 | s c c | Eqs +- 0 
foreach sig e SCC BMs <- getBlocks(CFG, sig) 

Eqs[sig] <— genBlockSizeRel(si#, mt, SCC, CFG, dg) foreach bm e BMs 
Sols <— recEqsSolver(simplifyEqs(£gs)) Eqs <— Eqs U genBlockSizeRel(6m, mt, SCC, dg) 
foreach sig e SCC r e t u r n normalize(£gs) 

inse r t (mt , s ize , sig, Sols[sig]) end 
r e t u r n mt 

end 
Fig. 3. The size analysis algorithm 

4 .1 Size a n a l y s i s 

We now show our algorithm for estimating parameter size relations based on the da ta depen
dency analysis. This method is inspired by the ideas of [13,12] but adapting them to the case 
of Java bytecode. Also, we provide a concrete algorithm for performing the analysis, rather 
than the more descriptive presentation of the related work discussed previously. Our goal is 
to represent input and output size relationships for each statement as a function in terms of 
the formal parameter sizes. Unless otherwise stated, whenever we refer to a parameter we 
mean its position. 

The size of an input is defined in terms of measures. By measure we mean a function 
that , given a da ta structure, returns a number. Our method is parametric on measures, 
which can be defined by the user and attached via annotations to parameters or classes. 
For concreteness, we have defined herein two measures, int for integer variables, and the 
longest path-length [1] ref for reference variables. The longest path-length of a variable is 
the cardinality of the longest chain of pointers than can be followed from it. More complex 
measures can be defined to handle other datatypes such as cyclic structures, arrays, etc. The 
set of measures will be denoted by Ai. 

The size analysis algorithm is given in pseudo-code in Figs. 3 and 4; its main steps are: 

1. Assign an upper bound to the size of every parameter position of all s tatements, including 
formal parameters, for all the block methods with the same signature (genBlockSizeRel , 
Fig. 4). 

2. For a given signature, take the set of size inequations returned by (1) and rename each 
size relation in terms of the sizes of input formal parameters ( n o r m a l i z a t i o n , Fig. 4). 

3. Repeat steps (1) and (2) for every signature corresponding to the same strongly-connected 
component ( s i z e A n a l y s i s , Fig. 3). 

4. Simplify size relationships by resolving mutually recursive functions, and find closed form 
solutions for the output formal parameters ( s i z e A n a l y s i s , Fig. 3). 

Intermediate results are cashed in a memo table mt, which stores measures, sizes, and resource 
usage expressions for every parameter position. Both size and resource usage expressions are 
defined in the C language: 

(expr) ::= (expr) (bin _op) (expr) | (quantifier)(expr) 
| (expr){expr) | lognum{expr) \ -{expr) \ (expr)\ 
| oo | num | size([(meas-ure),]arg((r| i| c) num)) 

(bin-op) 
(quantifier) 
(measure) 

= + I " I x | / | % 
= E i n 
= int I ref I . . . 



genBlockSizeRel(6m, rat, SCC, dg) 
body <— brn. body 
Eqs^0 
foreach stmt € body 

Let I be the input parameter positions in stmt 
Eqs <— .Eqs U genSizeRel(stmt, I, mt, dg) 
Eqs <— £gs U genOutSizeRel(stmt, mt, SCC) 

Let K be 6m output formal parameter positions 
Eqs <— £gs U genSizeRel(6m, A", mi, dg) 
return Eqs 

end 

genSizeRel (elem, Pos, mt, dg) 
Eqs^0 
foreach pos e Pos 

m <— lookup(mi, measure, elem.sig,pos) 
s <— getSize(m, elem.id,pos, dg) 
.Eqs <— £qs U {size(m, elem.id,pos) < s} 

return £qs 
end 

getSize(m, id,pos, dg) 
result <— val (TO, id, i) 
if result =/= oo then 

return result 
elseif 3 (elem,posp) e predec(dg, id, pos) t h e n 

TOP <— lookup(mi, measure, elem.sig,posp) 
if (m = TOP) then 

return s ize(m p , elem.id,posp) 
return oo 

end 

genOutSizeRel(simi, mi, SCC) 
Let J = { i i , . . . , i ; } be the input positions in stmt 
sig <— stmt.sig 
{TOij,. . . , TOi; } <— {lookup(mi, measure, sig, i i ) , . . . , 

lookup(mi, measure, sig, i;)} 
{ s i j , . . . , Sit} <— {size(m.i1, simi.id, i i) , . . . , 

size(m.i,, stmt.id, i i)i 
£ q s ^ 0 
Let O be the output parameter positions in stmt 
foreach o £ O 

m0 <— lookup(mi, measure, sig, o) 
if sig ^ SCC then 

<?jZP <_ / ) ° . ( V a- ) 
kj t ^ o u s e r -^szg v°zi ) • • • ) °2; y 
Sizeaigi <— max(lookup(mi, s ize , sig, o)) 

< J ^ e a i g ' ( s i i > 
(Si • i i n S i z e , Size, alg) 

Sizeaig 
Size0 

else 
S%Ze0 < ^sig (^ -o , Si1 , . . . , Sil ) 

Eqs <— Eqs U {size(m0 , stmt.id, o) < Sizeo} 
return £qs 

end 

normalize (Eqs) 
foreach size relation p < e\ e Eqs 

repeat 
if subexpression s appears in e\ 

and s < e2 G Eqs then 
replace each occurrence of s in ei with e2 

until there is no change 
return Eqs 

end 

Fig. 4. The size analysis algorithm (continuation) 

The size of the parameter at position i in statement stmt, under measure m, is referred to 
as s i z e ( m , stmt, i). We consider a parameter position to be input if it is bound to some da ta 
when the statement is invoked. Otherwise, it is considered an output parameter position. In 
the case of input parameter and output formal parameter positions, an upper bound on tha t 
size is returned by g e t S i z e (Fig. 4). The upper bound can be a concrete value when there is 
a constant in the referred position, i.e., when the v a l function returns a non-infinite value: 

Def in i t ion 1. The concrete size value for a parameter position under a particular measure 
is returned by va l : M. x Stmt x N - » £ , which evaluates the syntactic content of the actual 
parameter in that position: , .,. . . . 

I n it stmt.aparSj is an integer n and m = i n t 
va l (m, stmt,i) = < 0 if stmt.apars^ is n u l l and m = r e f 

[ oo otherwise 
If the content of tha t input parameter position is a variable, the algorithm searches the 

da ta dependency graph for its immediate predecessor. Since the intermediate representation 



is in SSA form, the only possible scenarios are that either there is a unique predecessor 
whose size is assigned to that input parameter position, or there is none, causing the input 
parameter size to be unbounded (oo). 

Consider now an output parameter position within a block method, case covered in 
genOutSizeRel (Fig. 4). If the output parameter position corresponds to a non-recursive 
invoke statement, either a size relationship function has already been computed recursively 
(since the analysis traverses each strongly-connected component in reverse topological order), 
or it is provided by the user through size annotations. In the first case, the size function of 
the output parameter position can be retrieved from the memo table by using the lookup op
eration, taking the maximum in case of several size relationship functions, and then passing 
the input parameter size relationships to this function to evaluate it. In the second scenario, 
the size function of the output parameter position is provided by the user through size an
notations, denoted by the A function in the algorithm. In both cases, it will able to return 
an explicit size relation function. 

Example 2. We have already shown in the CellPhone example how a class can be annotated. 
The Built in class includes the assignment method asg, annotated as follows: 

p u b l i c c l a s s B u i l t i n { 

@ S i z e { " s i z e ( r e t ) < = s i z e ( o ) " } 
p u b l i c s t a t i c n a t i v e O b j e c t a s g ( O b j e c t o ) ; 

/ / . . . rest of annotated b uiltins 
} 

which results in equation A^sg(ref, size(ref, asg, 0)) < size(ref , asg, 0). 

If the output parameter position corresponds to a recursive invoke statement, the size 
relationships between the output and input parameters are built as a symbolic size function. 
Since the input parameter size relations have already been computed, we can establish each 
output parameter position size as a function described in terms of the input parameter sizes. 

At this point, the algorithm has defined size relations for all parameter positions within 
a block method. However, those relations are either constants or given in terms of the imme
diate predecessor in the dependency graph. The algorithm rewrites the equation system such 
that we obtain an equivalent system in which only formal parameter positions are involved. 
This process is called normalization, shown in Fig 4. After normalization, the analysis repeats 
the same process for all block methods in the same strongly-connected component (SCC). 
Once every component has been processed, the analysis further simplifies the equations in 
order to resolve mutually recursive calls among block methods within the same SCC in the 
simplifyEqs procedure. 

Example 3. Consider the two mutually recursive equations: {<5?0(n) < 1 + S^ar(n — 1), 
Sbar(n) < 1 +<5?0(n)}. The simplification process in simplifyEqs will replace S^ar(n — 1) 
by 1 + 'S'f00(

n — 1) m the first equation, resulting in the system {<5?0(n) < 2 + <S?00(n — 1), 
<S 6

2
0 »<l+<S2 o o (n )} . 

In the final step, the analysis submits the simplified system to a recurrence equation solver 
(recEqsSolver, called from sizeAnalysis) in order to obtain approximated upper-bound 
closed forms. The interesting subject of how the equations are solved is beyond the scope of 



this paper (see, e.g., [33]). Our implementation does provide a dedicated implementation (an 
evolution of the solver of the Caslog system [12]) which covers a reasonable set of recurrence 
equations such as first-order and higher-order linear recurrence equations in one variable 
with constant and polynomial coefficients,3 divide and conquer recurrence equations, etc. In 
addition, the system has interfaces to external solvers (such as, e.g. Purrs [6], Mathematica, 
Matlab, . . . ) . 

Example 4- We now illustrate the definitions and algorithm with an example of how the 
size relations are inferred for the two Ce l lPhone . sendSms block methods (Fig. 1), using 
the ref measure for reference variables. We will refer to the A;-th occurrence of a s tatement 
stmt in a block method as strath, and denote Ce l lPhone . sendSms, Encoder . fo rmat , and 
S t ream. send by sendSms, format , and send respectively. Finally, we will refer to the size of 
the input formal parameter position i, corresponding to variable r-j, as sTi. 

The main steps in the process are listed in Fig. 5. The first block of rows contains the 
most relevant size parameter relationship equations for the recursive block method, while 
the second block of rows corresponds to the base case. These size parameter relationship 
equations are constructed by the analysis by first following the algorithm in Fig. 4, and then 
normalizing them (expressing them in terms of the input formal parameter sizes sTi). Also, in 
the first block of rows we observe tha t the algorithm has returned 6 x s i z e ( r e f , format, 1) 
as upper bound for the size of the formatted string, max(lookup(mt, s i z e , format, 2)). The 
result is the maximum of the two upper bounds given by the user for the two implementations 
for Encoder . fo rmat since TrimEncoder . format eliminates any leading and trailing white 
spaces (thus the output is at most as bigger as the input) , whereas UnicodeEncoder . fo rmat 
converts any special character into its Unicode equivalent (thus the output is at most six 
times the size of the input) , a safe upper bound for the output parameter position size is 
given by the second annotation. 

In the particular case of builtins and methods for which we do not have the code, size 
relationships are not computed but rather taken from the user OSize annotations. These 
functions are illustrated in the third block of rows. Finally, in the fourth block of rows we 
show the recurrence equations built for the output parameter sizes in the block method and 
in the final row the closed form solution obtained. 

4 .2 R e s o u r c e u s a g e a n a l y s i s 

The core of our framework is the resource usage analysis, whose pseudo code is shown in 
Fig 6. It takes a strongly-connected component of the CFG, including a set of annotations 
which describe application programmer-definable cost functions on a given set of resources, 
and calculates an expression which is an upper bound on the resource usage made by the 
program. The algorithm manipulates the same memo table described in Sec. 4.1 in order 
to avoid recomputations and access the size relationships already inferred. Without loss of 
generality we assume for conciseness in our presentation a single resource. 

The algorithm is structured in a very similar way to the size analysis (which also allows us 
to draw from it to keep the explanation within space limits): for each element of the strongly-
connected component the algorithm will construct an equation for each block method tha t 

3 Note that it is always possible to reduce a system of linear recurrence equations to a single linear 
recurrence equation in one variable. 



Size parameter relationship equations (normalized) 
s ize(ref ,ne, 0) 
s ize( ref ,ne, 1) 
size(ref, gtfi, 0) 
size(ref, gtfi, 2) 
size(ref, format, 1) 
size(ref, format, 2) 

size(ref, send, 1) 
size(ref , gtf2, 0) 
size(ref , gtf2, 2) 
size(ref, sendSms, 1) 
size(ref, sendSms, 5) 

size(ref, s i / i , 0) 
size(ref, stfi, 2) 
size(ref, stfi, 3) 

size(ref, si/2, 0) 
size(ref, si/2, 2) 
size(ref, si/2, 3) 

size(ref, asg, 0) 

size(ref, asg, 1) 

size(ref, eg, 0) 
size(ref, eg, 1) 
size(ref, asg, 0) 
s ize(ref ,asg, 1) 

Output paramet 

< size(ref, sendSms, 1) < s r i 
< va l ( re f ,ne , 1) < 0 
< s ize(ref ,ne, 0) < s r i 
< A^tf (ref, s ize(ref, gtfi, 0), _) < s r i — 1 
< size(ref, gtfi, 2) < s r i — 1 
< max(lookup(mi, s ize , format, 2))(size(ref, format, 2)) 
< max(sri,6 X s r i ) ( s r i — 1) 
< 6 X (sri - 1) 
< size(ref, format, 2) < 6 x (s ri — 1) 
< size(ref, gtfi, 0) < s r i 
< y4g^(ref, s ize(ref, ffi/2, 0), _) < sri — 1 
< size(ref, gi/2, 2) < s r i — 1 
< 5s

B
endSms(ref, _, s ize(ref , sendSms, 1), _, _) 

< 5 s
B

e n d S m s ( re f , s r 0 , s r i - l , s r 2 , s r 3 ) 
< size(ref , ffi/2, 0) < sri 
< size(ref, sendSms, 5) < 5 s e n d S m s(ref , sro, s r i — l ,s r2,s r3) 
< Altf(ref, s ize(ref, s i / i , 0), _, s ize(ref, stfi, 2)) 
< sri + 5 B

e n d S m s ( r e f , s r 0 , s r i - l , s r 2 , s r 3 ) 
< size(ref, s i / i ,3) < sri + 5B

e n d S m s(ref, s r 0 , s r i - l , s r 2 , s r 3 ) 
< size(ref, format, 2) < 6 x (s ri — 1) 
< Astf(reT, size(ref , si/2, 0), _, size(ref , si/2, 2)) 
< 7 x Sri - 6 + 5 B

e n d S m s ( r e f , s r 0 , s r i - l , s r 2 , s r 3 ) 
< size(ref , si/2, 3) 
< 7 x Sri - 6 + 5 B

e n d S m s ( r e f , s r 0 , s r i - l , s r 2 , s r 3 ) 
< Aasg(ref,size(ref,asg,0)) 
< 7 x Sri - 6 + 5 B

e n d S m s ( r e f , s r 0 , s r i - l , s r 2 , s r 3 ) 

< size(ref, sendSms, 1) < sri 
< val(ref ,eg, 1) < 0 
< val (ref, asg, 0) < 0 
< AaSg(ref,size(ref,asg,0)) < 0 

er size functions for builtins (provided through annotations) 

A2
gtf(ref,size(ref, gtf, 0),_) < size(ref, gtf, 0) - 1 
Aisg(ref ,size(ref, asg, 0)) < s ize(ref, asg, 0) 

.4|tf (ref, size(ref, stf, 0), _, size(ref, s i / , 2)) < size(ref, stf, 0) + size(ref, stf, 2) 

Simplified size equations and closed form solution 

SSendSms(.rei,SrO,Srl 

S 

S 2 S 3) < / 0 if Sr-l = 0 
r ' r _ ]_ 7 x s r i - 6 + 5 B

e n d S m s ( r e f , s r 0 , s r i - l , s r 2 , s r 3 ) if sri > 0 

L n d S m S ( r e I , s r O , S r l , S r 2 , S r 3 ) < 3.5 X S^i - 2.5 X Sr1 

Fig. 5. Size equations example 

shares the same signature representing the resource usage of that block. To do this, the 
algorithm will visit each invoke statement. There are three possible scenarios, covered by 
the genStmsRUExpr function. If the signatures of caller and callee(s) belong to the same 
strongly-connected component, we are analyzing a recursive invoke statement. Then, we add 



resourceAnalysis(SCC, res, mt, CFG) genStmtRUExpr(stmt, res, rat, SCC) 
Eqs <— 0 l s c c l Let { i i , . . . ,ik} be the input parameter positions in stmt 
foreach sig in SCC {si1,... , Sik} <— {max(lookup(mt, s ize , strat.s\g, ii)) 

Eqs[sig] <— genBlocksRUExpr(si#, res, rat, SCC, CFG) ,••• , 
Sols <— recEqsSolver(simplifyEqs(£gs)) max(lookup(mt, s ize , stmt.sig, ik))} 
foreach sig in SCC if stmt.sig jt SCC then 

inse r t (mi , cost,max(Sols[sig])) Costuser <— Aatmt.s\g(res, Six,. .. , Sik) 
return mt Costaig> <— lookup(m£, cost, res, stmt.sig) 

end Costaig <— Costaig> (six,... ,sik) 
return min(Costa;9 , Costuser) 

genBlocksRUExpr(si#, res, mt, SCC, CFG) else 
Eqs <— 0 return Cost(stmt.s\g,res, Silt... ,Sik) 
BMs <- getBlocks(CFG, sig) end 
foreach bra e BMs 

body <— bra,.body genBlockRUExpr(6m, res, mt) 
Costbody <— 0 Let { i i , . . . , i;} be bra input formal parameter positions 
foreach stmt e Body {s^ ,... , s^ } <— {lookup(mi, s ize , 6m.id, ii) 

Cost stmt <— genStmtRUExpr(stmt, res, mi, SCC) ,... , 
CosUody *- Costbody + Coststmt lookup(mi, s ize , fem.id, it)} 

Costbm <— genBlockRUExpr(6m, res, mt) return Cost(bm.\d,res, sit,... , Sit) 
Eqs <— Eqs U {Costbm < Costbody} 

return Eqs 
end 

Fig. 6. The resource usage analysis algorithm 

to the body resource usage a symbolic resource usage function, in an analogous fashion to 
the case of output parameters in recursive invocations during the size analysis. 

Example 5. The call (sixth statement) in the upper-most Cel lPhone . sendSms block method 
matches the signature of the block method itself and thus it is recursive. The first four param
eter positions are of input type. The upper-bound expression returned by genStmsRUExpr is 
Cost(sendSms,$, sro,sri — l,sr2,srs). Note tha t the input size relationships were already 
normalized during the size analysis. 

The other scenarios occur when the invoke statement is non-recursive. Either a resource usage 
function Costaig for the callee has been previously computed, or there is a user annotation 
Costusr tha t matches the given signature, or both. In the latter case, the minimum between 
these two functions is chosen (i.e., the most precise safe upper bound assigned by the analysis 
to the resource usage of the non-recursive invoke s ta tement) . 

Example 6. Consider the same block method as in the previous example and the invocation 
of Stream . send. The resource usage expression for the statement is defined by the function 
*4send($, -, 6 x (sr\ — 1)) since the input parameter at position one is at most six times the size 
of the second input formal parameter, as calculated by the size analysis in Fig. 5. Note also 
tha t there is a resource annotation QCost ( {"cents" , " 2 * s i z e ( r l ) "}) attached to the block 
method describing the behavior of Asend and yielding the expression Costuser — LZ~K(sr-i — 1). 
On the other hand, the absence of any callee code to analyze - t h e original method is na t ive -
results in Costaig = oo. Then, the upper bound obtained by the analysis for the statement 
is mm(Costaig,Costuser) = Costuser. 



Resource usage equations 

Cost(sendSms, $, sro, s 
oo 

H-min(lookup(m£, cost 

+min(lookup(m£, cost 
OO 

H-min(lookup(m£, cost 
oo 

+min(lookup(m£, cost 
OO 

H-min(lookup(m£, cost 
oo 

+min(lookup(m£, cost 
oo 

oo 

ri; ST-2; £7-3) < min(lookup(m£, cost, $,ne), 
©Cost ("cents" ,"0") = 0 

$,fjtf), Agtf($,8rl,-) ) 
0 oo 

$, format) (., Srl - l),Aformat(%,-,Srl - 1)) 
©Cost ("cents" ," 2*size(rl)" ) = 12 X (sri — 1) 

$,sen<i), Aend($,- ,6 x (sri - 1)) 
©Cost ("cents" ,"0") = 0 

$,gtf), Agtf($, sri, -) ) + Cost(sendSras 
@Cost("cents" ,"0") = 0 

$,Stf), Astf($,Srl,-,-) ) 
@Cost("cents" ,"0") = 0 

$,Stf), A i / ( $ , 8 r l , - , - ) ) 
©Cost ("cents" ,"0") = 0 

+min(lookup(m£, cost, $, asg), Aasg{§, -)) 

< 12 x (s r i — 1) + Cost(sendSms, $, sro, sri — 1, sr2, sr3) 

Cost(sendSms, $, sro, 

oo 

0,sr2,Sr3) < min(lookup(m£, cost, $, eq) , 
+ min(lookup(m£, cost, $, asg), 

N v ' 
oo 

@Cost( 

$, SrC 

cents", 

( $ , S r l 

, Syl — 

0")=0 

f , S r 2 

@Cost(" cents" ,"0") = 0 

-4eq($,0,_)) 
Aasg($,0)) 

©Cost ("cents" ,"0") = 0 

Simplified resource usage equations and closed form so 

Cost(sendSras, $, sro, s r i , sr2, sr3) < I ° 
\ 12 * s r i — 12 + C ost (sendSms, $, s r 

0, Srl 

lution 

— f, s, 2, S r 3) 

Sr3) 

< o 

if Srl = 0 
if Srl > 0 

Cost(sendSms,$, sro, Srl, Sr2, Sr3) < 6 X S l̂ — 6 X Srl 

Fig. 7. Resource equations example 

At this point, the analysis has built a resource usage function (denoted by Costb0dy) that 
reflects the resource usage of the statements within the block. Finally, it yields a resource 
usage equation of the form Costbiorj~ < Cost^o^y where Costuock is again a symbolic resource 
usage function built by replacing each input formal parameter position with its size relations 
in that block method. These resource usage equations are simplified by calling simplif yEqs 
and, finally, they are solved calling recEqsSolver, both already defined in Sec. 4.1. This 
process yields an (in general, approximate, but always safe) closed form upper bound on the 
resource usage of the block methods in each strongly-connected component. Note that given 
a signature the analysis constructs a closed form solution for every block method that shares 
that signature. These solutions approximate the resource usage consumed in or provided by 
each block method. In order to compute the total resource usage of the signature the analysis 
returns the maximum of these solutions yielding a safe global upper bound. 

Example 7. The resource usage equations generated by our algorithm for the CellPhone. sendSms 
block methods and the resource denoted by $ (i.e., monetary total cost of sending the SMSs 



through a cell phone) are listed in Fig. 7. The computation is in part based on the size rela
tions for each output parameter position in Fig. 5. The resource usage of each block method is 
calculated by building an equation such that the left part is a symbolic function constructed 
by replacing each parameter position with its size (i.e., Cost(sendSms, $, sro, s r i , sr2, srs) 
and Cost(sendSms, $, sro, 0, sr2, srs,) ), and the rest of the equation consists of adding the 
resource usage of the invoke statements in the block method. These are calculated by com
puting the minimum between the resource usage function inferred by the analysis and the 
function provided by the user. The equations corresponding to the recursive and non-recursive 
block methods are in the first and second row, respectively. They can be simplified (third 
row) and expressed in closed form (fourth row), obtaining a final upper bound for the charge 
incurred by sending the list of text messages o f 6 x s ^ - 6 x s , i . 

5 Experimental results 

We have completed an implementation of our framework, and tested it for a representative 
set of benchmarks and resources. Our experimental results are summarized in Table 1. Col
umn Program provides the name of the main class to be analyzed. Column Resource(s) 
shows the resource(s) defined and tracked. Column Size T. shows the time (in milliseconds) 
required by the size analysis to construct the size relations (including the data dependency 
analysis and class hierarchy analysis) and obtain the closed form. Column Res. T . lists the 
time taken to build the resource usage expressions for all method blocks and obtain their 
closed form solutions. Total T. provides the total times for the whole analysis process. Fi
nally, column Resource Usage Func. provides the upper bound functions inferred for the 
resource usage. For space reasons, we only show the most important (asymptotic) component 
of these functions, but the analysis yields concrete functions with constants. 

Regarding the benchmarks we have covered a reasonable set of data-structures used in 
object-oriented programming and also standard Java libraries used in real applications. We 
have also covered an ample set of application-dependent resources which we believe can 
be relevant in those applications. In particular, not only have we represented high-level 
resources such as cost of SMS, bytes received (including a coarse measure of bandwidth, as 
a ratio of data per program step), and files left open, but also other low-level (i.e., bytecode 
level) resources such as stack usage or energy consumption. The resource usage functions 
obtained can be used for several purposes. In program Files (a fragment characteristic of 
operating system kernel code) we kept track of the number of file descriptors left open. The 
data inferred for this resource can be clearly useful, e.g., for debugging: the resource usage 
function inferred in this case (0(n)) denotes that the programmer did not close 0(n) file 
descriptors previously opened. In program Join (a database transaction which carries out 
accesses to different tables) we decided to measure the number of accesses to such external 
tables. This information can be used, e.g., for resource-oriented specialization in order to 
perform optimized checkpoints in transactional systems. The rest of the benchmarks include 
other definitions of resources which are also typically useful for verifying application-specific 
properties: EST (a generic binary search tree, used in [3] where a heap space analysis for 
Java bytecode is presented), CellPhone (extended version of program in Figure 1), Client 
(a socket-based client application), Dhrystone (a modified version of a program from [20] 
where a general framework is defined for estimating the energy consumption of embedded 



Program 

BST 
CellPhone 
Client 

Dhrystone 
Divbytwo 
Files 

Join 
Screen 

Resource(s) 

Heap usage 
SMS monetary cost 
Bytes received and 
"Bandwidth" required 
Energy consumption 
Stack usage 
Files left open and 
Data stored 
DB accesses 
Screen width 

Size T. 

250 
271 
391 

602 
142 
508 

334 
388 

Res. T. 

22 
17 
38 

47 
13 
53 

19 
38 

Total T. 

367 
386 
527 

759 
219 
649 

460 
536 

Resource Usage Func. 

0(2 n ) n = tree depth 
Ofn2) n = packets length 
Ofn) n = stream length 

0(1) -
Ofn) n = int value 
Oflog2fn)) n = int value 
Ofn) n = number of files 
Ofn x m) m = stream length 
Ofn x m) n,m = records in tables 
Ofn) n = stream length 

Table 1. Times in ms of different phases of the resource analysis and resource usage functions on a 
Pentium M 1.73Ghz with 1Gb of RAM. 

JVM applications; the complete table with the energy consumption costs that we used can be 
found there), DivByTwo (a simple arithmetic operation), and Screen (a MIDP application 
for a cellphone, where the analysis is used to make sure that message lines do not exceed 
the phone screen width). The benchmarks also cover a good range of complexity functions 
(O(l), 0(log(n), 0(n), 0(n2)..., 0 (2") , . . . ) and different types of structural recursion such 
as simple, indirect, and mutual. The code for these benchmarks and a demonstrator are 
available at http: //www. cs . unm. edu/~ j orge/RUA. 

6 Conclusions 

We have presented a fully-automated analysis for inferring upper bounds on the usage that 
a Java bytecode program makes of a set of application programmer-definable resources. Our 
analysis derives a vector of functions, one for each defined resource. Each of these functions 
returns, for each given set of input data sizes, an upper bound on the usage that the whole 
program (and each individual method) make of the corresponding resource. Important novel 
aspects of our approach are the fact that it allows the application programmer to define the 
resources to be tracked by writing simple resource descriptions via source-level annotations, 
as well as the fact that we have provided a concrete analysis algorithm and report on an 
implementation. The current results show that the proposed analysis can obtain non-trivial 
bounds on a wide range of interesting resources in reasonable time. Another important aspect 
of our work, because of its impact on the scalability, precision, and automation of the analysis, 
is that our approach allows using the annotations also for a number of other purposes such 
as stating the resource usage of external methods, which is instrumental in allowing modular 
composition and thus scalability. In addition, our annotations allow stating the resource 
usage of any method for which the automatic analysis infers a value that is not accurate 
enough to prevent inaccuracies in the automatic inference from propagating. Annotations 
are also used by the size and resource usage analysis to express their output. Finally, the 
annotation language can also be used to state specifications related to resource usage, which 
can then be proved or disproved based on the results of analysis following, e.g., the scheme 
of [19] thus finding bugs or verifying (the resource usage of) the program. 
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