
Customizable Resource Usage Analysis
for Java Bytecode

Jorge Navas,1 Mario Mendez-Lojo,1 Manuel V. Hermenegildo1 '2

1 Dept. of Computer Science, University of New Mexico (USA)
2 Dept. of Computer Science, Tech. U. of Madrid (Spain) and IMDEA-Software

Abstract. Automatic cost analysis of programs has been traditionally studied in
terms of a number of concrete, predefined resources such as execution steps, time, or
memory. However, the increasing relevance of analysis applications such as static de
bugging and/or certification of user-level properties (including for mobile code) makes
it interesting to develop analyses for resource notions that are actually application-
dependent. This may include, for example, bytes sent or received by an application,
number of files left open, number of SMSs sent or received, number of accesses to a
database, money spent, energy consumption, etc. We present a fully automated anal
ysis for inferring upper bounds on the usage that a Java bytecode program makes
of a set of application programmer-definable resources. In our context, a resource is
defined by programmer-provided annotations which state the basic consumption that
certain program elements make of that resource. From these definitions our analysis
derives functions which return an upper bound on the usage that the whole program
(and individual blocks) make of that resource for any given set of input data sizes.
The analysis proposed is independent of the particular resource. We also present some
experimental results from a prototype implementation of the approach covering an
ample set of interesting resources.

1 Introduction

The usefulness of analyses which can infer information about the costs of computations is
widely recognized since such information is useful in a large number of applications including
performance debugging, verification, and resource-oriented specialization. The kinds of costs
which have received most attention so far are related to execution steps as well as, sometimes,
execution time or memory (see, e.g., [21,28,29,16,8,17,32] for functional languages, [30,
7,15,34] for imperative languages, and [13,12,14] for logic languages). These and other
types of cost analyses have been used in the context of applications such as granularity
control in parallel and distributed computing (e.g., [23]), resource-oriented specialization
(e.g., [10, 27]), or, more recently, certification of the resources used by mobile code (e.g., [11,
4, 9, 2,18]). Specially in these more recent applications, the properties of interest are often
higher-level, user-oriented, and application-dependent rather than (or, rather, in addition
to) the predefined, more traditional costs such as steps, time, or memory. Regarding the
object of certification, in the case of mobile code the certification and checking process is
often performed at the bytecode level [22], since, in addition to other reasons of syntactic
convenience, bytecode is what is most often available at the receiving (checker) end.

We propose a fully automated framework which infers upper bounds on the usage that
a Java bytecode program makes of application programmer-definable resources. Examples
of such programmer-definable resources are bytes sent or received by an application over a
socket, number of files left open, number of SMSs sent or received, number of accesses to a
database, number of licenses consumed, monetary units spent, energy consumed, disk space
used, and of course, execution steps (or bytecode instructions), time, or memory. In our
context, resources are defined by programmers by means of annotations. The annotations
defining each resource must provide for some user-selected elements corresponding to the
bytecode program being analyzed (classes, methods, variables, etc.), a value that describes
the cost of that element for that particular resource. These values can be constants or, more
generally, functions of the input data sizes. The objective of our analysis is then to statically
derive from these elementary costs an upper bound on the amount of those resources that
the program as a whole (as well as individual blocks) will consume or provide.

As mentioned before, most previous research in resource analysis has been done for declar
ative programming languages. In particular, our approach builds on the work of [13,12] for
logic programs, where cost functions are inferred by solving recurrence equations derived from
the syntactic structure of the program. Also, most previous work deals with concrete, tradi
tional resources (e.g., execution steps, time, or memory). Some recent work does deal with
less restricted sets of resources. In [26] an automatic parametric analysis for inferring upper-
and lower-bounds (which is non-trivial because of the possibility of failure) for logic pro
grams is presented. This work shows also how to support application programmer-definable
resources, but it is designed for Prolog and at the source code level, and thus its adaptation
to Java bytecode is far from trivial because of issues such as virtual method invocation,
unstructured control flow, assignment, the fact that statements are low-level bytecode in
structions, etc. In [1], a cost analysis is described that does deal with Java bytecode and is
capable of deriving cost relations which are functions of input data sizes. However, while the
approach proposed can conceptually be adapted to infer different resources, for each analysis
developed the measured resource is fixed and changes in the implementation are needed to
develop analyses for other resources. In contrast, our approach allows the application pro
grammer to define the resources through annotations in the same source language in which
the application is written, and without changing the analyzer in any way. In addition, the
presentations in [26,1] are more descriptive, while herein our aim is to provide a concrete
analysis algorithm. Finally, we also provide implementation results, in contrast to [1].

2 Overview of the Approach

We start by illustrating the overall approach through a working example. The Java program in
Fig. 1 emulates the process of sending of text messages within a cell phone. The source code is
provided here just for clarity, since the analyzer works directly on the corresponding bytecode.
The phone (class CellPhone) receives a list of packets (SmsPacket), each one containing a
single SMS, encodes them (Encoder), and sends them through a stream (Stream). There
are two types of encoding: TrimEncoder, which eliminates any leading and trailing white
spaces, and UnicodeEncoder, which converts any special character into its Unicode(\wxxxx)
equivalent. The length of the SMS which the cell phone ultimately sends through the stream
depends on the size of the encoded message.

import Java . net . URLEncoder ;
publ ic c l a s s Cel lPhone {

SmsPacket sendSms(SmsPacket smsPk ,
Encoder enc ,
Stream stm) {

if (smsPk != n u l l) {
S t r i n g newSms = e n c . f o r m a t (smsPk . sms) ;
stm . send (newSms) ;
smsPk . next=sendSms (smsPk .next , enc ,stm) ;
smsPk . sms = newSms ;

}
return smsPk;

}
}
c l a s s SmsPacket j

S t r i n g sms ;
SmsPacket next ;

}

i n t e r fa ce Encoder j
S t r i n g format (S t r i n g d a t a) ;

}
c l a s s TrimEncoder implements Encoder j

@Cost({" c e n t s " , " 0 " })
@Size (" s i ze (r e t) < = s i z e (s)")
publ ic S t r i n g f o r m a t (S t r i n g s){

return s . t r im () ;
}

}
c l a s s UnicodeEncoder implements Encoder j

@Cost({" c e n t s " , " 0 " })
@Size(" s ize (re t)<=6* s ize (s)")
publ ic S t r i n g f o r m a t (S t r i n g s){

return URLEncoder . encode (s) ;
}

}
a b s t r a c t c l a s s St ream {

@Cost ({ " c e n t s " , " 2 * s i ze (d a t a) " })
nat ive void send(S t r i n g d a t a) ;

}

CellPhone.sendSms(rO,rl,r2,r3,r4,r5)

Builtin.ne(rl,null,void)
Builtin.gtf(rl,sms,r6)
Encoder.format(r2, r6, rTy
Stream.send(r3,r7,void)-
Builtin.gtf(rl,next,r8)

-CellPhone.sendSms(rO,r8,r2,r3,r9,rlO)
Builtin.stf(rl,next,rlO,rl_l)
Builtin.stf(rl_l,sms,r7,r4)
Builtin.asg(r4,r5)

TrimEncoder ,format(r0,rl,r2)

CellPhone.sendSms(rO,rl,r2,r3,r4,r5)

Builtin.eq(rl,null,void)
Builtin.asg(null,r5)

@Cost({"cents","0"})

@Size("size(r2)<=size(r1)")

java.lang.String.trim(rl,r3)
Builtin.asg(r3,r2)

UnicodeEncoder.format(rO,rl,r2)

@Cost({"cents","0"})

@Size("size(r2)<=6*size(r1)")

java.net.URLEncoder.encode(rl,r3)
Builtin.asg(r3,r2)

Fig. 1. Motivating example: Java source code and Control Flow Graph

A resource is a fundamental component in our approach. A resource is a user-defined no
tion which associates a basic cost function with some user-selected elements (class, method,
statement) in the program. This is expressed by adding Java annotations to the code. The
objective of the analysis is to approximate the usage that the program makes of the re
source. In the example, the resource is the cost in cents of a dollar for sending the list of
text messages, since we will assume for simplicity that the carrier charges are proportional
(2 cents/character) to the number of characters sent. This domain knowledge is reflected by
the user in the method that is ultimately responsible for the communication (Stream, send),
by adding the annotation QCost({"cents" , "2*size(data)"}). Similarly, the formatting
of an SMS done in any implementation of Encoder.format is free, as indicated by the
@Cost({"cents","0")}) annotation. The analysis understands these resource usage expres
sions and uses them to infer a safe upper bound on the total usage of the program.

Step 1: Constructing the Control Flow Graph. In the first step, the analysis translates
the Java bytecode into an intermediate representation building a Control Flow Graph (CFG).
Edges in the CFG connect block methods and describe the possible flows originated from
conditional jumps, exception handling, virtual invocations, etc. A (simplified) version of the
CFG corresponding to our code example is also shown in Fig. 1.

http://java.net

The original sendSms method has been compiled into two block methods that share the
same signature: class where declared, name (CellPhone. sendSms), and number and type
of the formal parameters. The bottom-most box represents the base case, in which we re
turn null, here represented as an assignment of nu l l to the return variable r^; the sibling
corresponds to the recursive case. The virtual invocation of format has been transformed
into a static call to a block method named Encoder .format. There are two block meth
ods which are compatible in signature with that invocation, and which serve as proxies for
the intermediate representations of the interface implementations in TrimEncoder.format
and UnicodeEncoder.format. Note that the resource-related annotations have been carried
through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships. The algorithm
infers in this phase size relationships between the input and the output formal parameters
of every block method. For now, we can assume that size of (the contents of) a variable is
the maximum number of pointers we need to traverse, starting at the variable, until nu l l is
found. The following equations are inferred by the analysis for the two CellPhone. sendSms
block methods : („ .„ „

< \ < J ° lf Sri = 0 m
The size of the returned value rs is independent of the sizes of the input parameters this,
enc, and stm (sro,sr2 and sr3 respectively) but not of the size sri of the list of text mes
sages smsPk (r-\ in the graph). Such size relationships are computed based on dependency
graphs, which represent data dependencies between variables in a block, and user anno
tations if available. In the example in Fig. 1, the user indicates that the formatting in
UnicodeEncoder results in strings that are at most six times longer than the ones received as
input @Size("size(ret)<=6*size(s) ") , while the trimming in TrimEncoder returns strings
that are equal or shorter than the input (@Size("size(ret)<=size(s) ")). The equation sys
tem (1) must be approximated by a recurrence solver in order to obtain a closed form solution.
In this case, our analysis yields the solution sizer5(sro, sri, sr2, sr3) < 3.5 x s2

r — 2.5 x sri.

Step 3: Resource Usage Analysis. In the this phase, the analysis uses the CFG, the
data dependencies, and the size relationships inferred in previous steps in order to infer a
resource usage equation for each block method in the CFG and further simplify the resulting
obtaining closed form solutions (in general, approximated -upper bounds). Therefore, the
objective of the resource analysis is to statically derive safe upper bounds on the amount of
resources that each of the block methods in the CFG consumes or provides. The result given
by our analysis for the monetary cost of sending the messages (CellPhone.sendSms) is

costsendSms(sr sr sr s r) < { ° i f s r i = 0
[1^ x sri i z -|- COStsen(lgrrriS [sro, sri 1, sr2, s r 3) II sri > U

i.e., the cost is proportional to the size of the message list (smsPk in the source, r\ in the
CFG). Again, this equation system is solved by a recurrence solver, resulting in the closed
formula costsendSms(sro, s r i , s r 2 , sr3) < 6 x s2

ri - 6 x sri.

3 Intermediate program representation
Analysis of a Java bytecode program normally requires its translation into an intermedi
ate representation that is easier to manipulate. In particular, our decompilation (assisted

by the Soot [31] tool) involves elimination of stack variables, conversion to three-address
statements, static single assignment (SSA) transformation, and generation of a Control Flow
Graph (CFG) tha t is ult imately the subject of analysis. The decompilation process is an evo
lution of the work presented in [25], which has been successfully used as the basis for other
analyses [24]. Our ul t imate objective is to support the full Java language but the current
transformation has some limitations: it does not yet support reflection, threads, or runtime
exceptions. The following grammar describes the intermediate representation; some of the
elements in the tuples are named so we can refer to them as node. name.

CFG
Block Method
Sig
Stmt
Var

BlockMethod+

(id :N, sig: Sig, f pa rs:Id+, an not :expr*, body :Stmt*)
(c\ass:Type,name:Id,pars:Type+)
(\&N,s\g:Sig,apars:(Id\C't) +)
(name.Id, type.Type)

The Control Flow Graph is formed by block methods. A block method is similar to a Java
method, with some particularities: a) if the program flow reaches it, every statement in it
will be executed, i.e, it contains no branching; b) its signature might not be unique: the CFG
might contain several block methods in the same class sharing the same name and formal
parameter types; c) it always includes as formal parameters the returned value ret and, unless
it is static, the instance self-reference this; d) for every formal parameter (input formal
parameter) of the original Java method tha t might be modified, there is an extra formal
parameter in the block method tha t contains its final version in the SSA transformation
(output formal parameter) ; e) every statement in a block method is an invocation, including
builtins (assignment asg, field dereference gt f , etc.), which are understood as block methods
of the class B u i l t i n .

As mentioned before, there is no branching within a block method. Instead, each con
ditional i f cond stmti e l s e stmt2 in the original program is replaced with an invocation
and two block methods which uniquely match its signature: the first block corresponds to
the stmt 1 branch, and the second one to stmti. To respect the semantics of the language,
we decorate the first block method with the result of compiling cond, while we at tach cond
to its sibling. A similar approach is used in virtual invocations, for which we introduce as
many block methods in the graph as possible receivers of the call were in the original pro
gram. A set of block methods with the same signature sig can be retrieved by the function
getBlocks(CFG, sig).

Example 1. We now focus our at tention on the two block methods in Fig. 1, which are the
result of compiling the Cel lPhone . sendSms method. Input formal parameters r n , r i , r 2 , r 3
correspond to this, smsPk, enc, and stm, respectively. In the case of r\, the contents of its
fields next and sms are altered by invoking the s t f (abbreviation for s e t f i e l d) builtin block
method. The output formal parameter r^ contains the final state of r\ after those modifica
tions. The value returned by the block methods is contained in rs- Space reasons prevent us
from showing any type information in the CFG in Fig 1. In the case of Encoder .format, for
example, we say tha t there are two blocks with the same signature because they are both
defined in class Encoder, have the same name (format) and list of types of formal parameters
{ E n c o d e r , S t r i n g , S t r i n g } .

User specifications are written using the annotation system introduced in Java 1.5 which,
unlike JML specifications, has the very useful characteristic of being preserved in the byte-

resourceAnalysis(Ci ; lG, res)
CFG <- classAnalysis(CFG)
rat <— in i t i a l i z e (C i ; l G)
SCCs <— stronglyConnectedComponents(Ci ; lG)
dg <— dataDependencyAnalysis(CFG, rat)
foreach SCC e SCCs in reverse topological order

rat <— sizeAnalysis(S'C'C', mi, CFG, dg)
rat <— resourceAnalysis(S'C'C', res, mi, CFG)

r e t u r n mi
end

Fig. 2. Generic Resource Analysis Algorithm

code. Annotations are carried over to our CFG representation, as can be seen in Fig. 1.
An additional advantage of using annotations is tha t they respect the semantics of the lan
guage; for example, an annotation at tached to a non private method is inherited by all the
descendant classes.

4 A framework for resource usage analysis

We now describe our framework for inferring upper bounds on the usage tha t a Java bytecode
program makes of a set of application programmer-definable resources. The algorithm in Fig 2
takes as input a Control Flow Graph in the format described in the previous section, including
the user annotations tha t assign elementary costs to certain graph elements for a particular
resource. The user also indicates the set of resources to be tracked by the analysis.

A preliminary step in our approach is a class hierarchy analysis [5, 24], aimed at simplify
ing the CFG and therefore improving overall precision. Then, another analysis is performed
over the CFG to extract da ta dependencies, as described below. The next step is the decom
position of the CFG into its strongly-connected components. After these steps, two different
analyses are run separately on each strongly connected component: a) the size analysis, which
estimates parameter size relationships for each statement and output formal parameters as a
function of the input formal parameter sizes (Sec. 4.1); and b) the actual resource analysis,
which computes the resource usage of each block method in terms also of the input da ta sizes
(Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis tha t yields position dependency
graphs for the block methods within a strongly connected component. Each graph G = (V,E)
represents da ta dependencies between positions corresponding to statements in the same
block method, including its formal parameters. Vertexes in V denote positions, and edges
(si ,«2) € E denote tha t S2 is dependent on s i . We say tha t si is a predecessor of S2- We
will assume a p r e d e c function that takes a position dependency graph, a statement, and
a parameter position and returns its nearest predecessor in the graph. The following figure
shows the position dependency graph of the TrimEncoder . format block method:

(rO) (rl) (r2)

TrimEncoder.format(0 , 1 , 2)

java.lang.String.trirrKOjJ.) /

Builtin.asg(0 , 1) ^^/
(r3) (r2T

sizeAnalysis(S'CC, mt, CFG, dg) genBlocksSizeRel(si#, mt, SCC, CFG, dg)
Eqs +- 0 | s c c | Eqs +- 0
foreach sig e SCC BMs <- getBlocks(CFG, sig)

Eqs[sig] <— genBlockSizeRel(si#, mt, SCC, CFG, dg) foreach bm e BMs
Sols <— recEqsSolver(simplifyEqs(£gs)) Eqs <— Eqs U genBlockSizeRel(6m, mt, SCC, dg)
foreach sig e SCC r e t u r n normalize(£gs)

inse r t (mt , s ize , sig, Sols[sig]) end
r e t u r n mt

end
Fig. 3. The size analysis algorithm

4 .1 Size a n a l y s i s

We now show our algorithm for estimating parameter size relations based on the da ta depen
dency analysis. This method is inspired by the ideas of [13,12] but adapting them to the case
of Java bytecode. Also, we provide a concrete algorithm for performing the analysis, rather
than the more descriptive presentation of the related work discussed previously. Our goal is
to represent input and output size relationships for each statement as a function in terms of
the formal parameter sizes. Unless otherwise stated, whenever we refer to a parameter we
mean its position.

The size of an input is defined in terms of measures. By measure we mean a function
that , given a da ta structure, returns a number. Our method is parametric on measures,
which can be defined by the user and attached via annotations to parameters or classes.
For concreteness, we have defined herein two measures, int for integer variables, and the
longest path-length [1] ref for reference variables. The longest path-length of a variable is
the cardinality of the longest chain of pointers than can be followed from it. More complex
measures can be defined to handle other datatypes such as cyclic structures, arrays, etc. The
set of measures will be denoted by Ai.

The size analysis algorithm is given in pseudo-code in Figs. 3 and 4; its main steps are:

1. Assign an upper bound to the size of every parameter position of all s tatements, including
formal parameters, for all the block methods with the same signature (genBlockSizeRel ,
Fig. 4).

2. For a given signature, take the set of size inequations returned by (1) and rename each
size relation in terms of the sizes of input formal parameters (n o r m a l i z a t i o n , Fig. 4).

3. Repeat steps (1) and (2) for every signature corresponding to the same strongly-connected
component (s i z e A n a l y s i s , Fig. 3).

4. Simplify size relationships by resolving mutually recursive functions, and find closed form
solutions for the output formal parameters (s i z e A n a l y s i s , Fig. 3).

Intermediate results are cashed in a memo table mt, which stores measures, sizes, and resource
usage expressions for every parameter position. Both size and resource usage expressions are
defined in the C language:

(expr) ::= (expr) (bin _op) (expr) | (quantifier)(expr)
| (expr){expr) | lognum{expr) \ -{expr) \ (expr)\
| oo | num | size([(meas-ure),]arg((r| i| c) num))

(bin-op)
(quantifier)
(measure)

= + I " I x | / | %
= E i n
= int I ref I . . .

genBlockSizeRel(6m, rat, SCC, dg)
body <— brn. body
Eqs^0
foreach stmt € body

Let I be the input parameter positions in stmt
Eqs <— .Eqs U genSizeRel(stmt, I, mt, dg)
Eqs <— £gs U genOutSizeRel(stmt, mt, SCC)

Let K be 6m output formal parameter positions
Eqs <— £gs U genSizeRel(6m, A", mi, dg)
return Eqs

end

genSizeRel (elem, Pos, mt, dg)
Eqs^0
foreach pos e Pos

m <— lookup(mi, measure, elem.sig,pos)
s <— getSize(m, elem.id,pos, dg)
.Eqs <— £qs U {size(m, elem.id,pos) < s}

return £qs
end

getSize(m, id,pos, dg)
result <— val (TO, id, i)
if result =/= oo then

return result
elseif 3 (elem,posp) e predec(dg, id, pos) t h e n

TOP <— lookup(mi, measure, elem.sig,posp)
if (m = TOP) then

return s ize(m p , elem.id,posp)
return oo

end

genOutSizeRel(simi, mi, SCC)
Let J = { i i , . . . , i ; } be the input positions in stmt
sig <— stmt.sig
{TOij,. . . , TOi; } <— {lookup(mi, measure, sig, i i) , . . . ,

lookup(mi, measure, sig, i;)}
{ s i j , . . . , Sit} <— {size(m.i1, simi.id, i i) , . . . ,

size(m.i,, stmt.id, i i)i
£ q s ^ 0
Let O be the output parameter positions in stmt
foreach o £ O

m0 <— lookup(mi, measure, sig, o)
if sig ^ SCC then

<?jZP <_ /) ° . (V a-)
kj t ^ o u s e r -^szg v°zi) • • •) °2; y
Sizeaigi <— max(lookup(mi, s ize , sig, o))

< J ^ e a i g ' (s i i >
(Si • i i n S i z e , Size, alg)

Sizeaig
Size0

else
S%Ze0 < ^sig (^ -o , Si1 , . . . , Sil)

Eqs <— Eqs U {size(m0 , stmt.id, o) < Sizeo}
return £qs

end

normalize (Eqs)
foreach size relation p < e\ e Eqs

repeat
if subexpression s appears in e\

and s < e2 G Eqs then
replace each occurrence of s in ei with e2

until there is no change
return Eqs

end

Fig. 4. The size analysis algorithm (continuation)

The size of the parameter at position i in statement stmt, under measure m, is referred to
as s i z e (m , stmt, i). We consider a parameter position to be input if it is bound to some da ta
when the statement is invoked. Otherwise, it is considered an output parameter position. In
the case of input parameter and output formal parameter positions, an upper bound on tha t
size is returned by g e t S i z e (Fig. 4). The upper bound can be a concrete value when there is
a constant in the referred position, i.e., when the v a l function returns a non-infinite value:

Def in i t ion 1. The concrete size value for a parameter position under a particular measure
is returned by va l : M. x Stmt x N - » £ , which evaluates the syntactic content of the actual
parameter in that position: , .,. . . .

I n it stmt.aparSj is an integer n and m = i n t
va l (m, stmt,i) = < 0 if stmt.apars^ is n u l l and m = r e f

[oo otherwise
If the content of tha t input parameter position is a variable, the algorithm searches the

da ta dependency graph for its immediate predecessor. Since the intermediate representation

is in SSA form, the only possible scenarios are that either there is a unique predecessor
whose size is assigned to that input parameter position, or there is none, causing the input
parameter size to be unbounded (oo).

Consider now an output parameter position within a block method, case covered in
genOutSizeRel (Fig. 4). If the output parameter position corresponds to a non-recursive
invoke statement, either a size relationship function has already been computed recursively
(since the analysis traverses each strongly-connected component in reverse topological order),
or it is provided by the user through size annotations. In the first case, the size function of
the output parameter position can be retrieved from the memo table by using the lookup op
eration, taking the maximum in case of several size relationship functions, and then passing
the input parameter size relationships to this function to evaluate it. In the second scenario,
the size function of the output parameter position is provided by the user through size an
notations, denoted by the A function in the algorithm. In both cases, it will able to return
an explicit size relation function.

Example 2. We have already shown in the CellPhone example how a class can be annotated.
The Built in class includes the assignment method asg, annotated as follows:

p u b l i c c l a s s B u i l t i n {

@ S i z e { " s i z e (r e t) < = s i z e (o) " }
p u b l i c s t a t i c n a t i v e O b j e c t a s g (O b j e c t o) ;

/ / . . . rest of annotated b uiltins
}

which results in equation A^sg(ref, size(ref, asg, 0)) < size(ref , asg, 0).

If the output parameter position corresponds to a recursive invoke statement, the size
relationships between the output and input parameters are built as a symbolic size function.
Since the input parameter size relations have already been computed, we can establish each
output parameter position size as a function described in terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions within
a block method. However, those relations are either constants or given in terms of the imme
diate predecessor in the dependency graph. The algorithm rewrites the equation system such
that we obtain an equivalent system in which only formal parameter positions are involved.
This process is called normalization, shown in Fig 4. After normalization, the analysis repeats
the same process for all block methods in the same strongly-connected component (SCC).
Once every component has been processed, the analysis further simplifies the equations in
order to resolve mutually recursive calls among block methods within the same SCC in the
simplifyEqs procedure.

Example 3. Consider the two mutually recursive equations: {<5?0(n) < 1 + S^ar(n — 1),
Sbar(n) < 1 +<5?0(n)}. The simplification process in simplifyEqs will replace S^ar(n — 1)
by 1 + 'S'f00(

n — 1) m the first equation, resulting in the system {<5?0(n) < 2 + <S?00(n — 1),
<S 6

2
0 »<l+<S2 o o (n)} .

In the final step, the analysis submits the simplified system to a recurrence equation solver
(recEqsSolver, called from sizeAnalysis) in order to obtain approximated upper-bound
closed forms. The interesting subject of how the equations are solved is beyond the scope of

this paper (see, e.g., [33]). Our implementation does provide a dedicated implementation (an
evolution of the solver of the Caslog system [12]) which covers a reasonable set of recurrence
equations such as first-order and higher-order linear recurrence equations in one variable
with constant and polynomial coefficients,3 divide and conquer recurrence equations, etc. In
addition, the system has interfaces to external solvers (such as, e.g. Purrs [6], Mathematica,
Matlab, . . .) .

Example 4- We now illustrate the definitions and algorithm with an example of how the
size relations are inferred for the two Ce l lPhone . sendSms block methods (Fig. 1), using
the ref measure for reference variables. We will refer to the A;-th occurrence of a s tatement
stmt in a block method as strath, and denote Ce l lPhone . sendSms, Encoder . fo rmat , and
S t ream. send by sendSms, format , and send respectively. Finally, we will refer to the size of
the input formal parameter position i, corresponding to variable r-j, as sTi.

The main steps in the process are listed in Fig. 5. The first block of rows contains the
most relevant size parameter relationship equations for the recursive block method, while
the second block of rows corresponds to the base case. These size parameter relationship
equations are constructed by the analysis by first following the algorithm in Fig. 4, and then
normalizing them (expressing them in terms of the input formal parameter sizes sTi). Also, in
the first block of rows we observe tha t the algorithm has returned 6 x s i z e (r e f , format, 1)
as upper bound for the size of the formatted string, max(lookup(mt, s i z e , format, 2)). The
result is the maximum of the two upper bounds given by the user for the two implementations
for Encoder . fo rmat since TrimEncoder . format eliminates any leading and trailing white
spaces (thus the output is at most as bigger as the input) , whereas UnicodeEncoder . fo rmat
converts any special character into its Unicode equivalent (thus the output is at most six
times the size of the input) , a safe upper bound for the output parameter position size is
given by the second annotation.

In the particular case of builtins and methods for which we do not have the code, size
relationships are not computed but rather taken from the user OSize annotations. These
functions are illustrated in the third block of rows. Finally, in the fourth block of rows we
show the recurrence equations built for the output parameter sizes in the block method and
in the final row the closed form solution obtained.

4 .2 R e s o u r c e u s a g e a n a l y s i s

The core of our framework is the resource usage analysis, whose pseudo code is shown in
Fig 6. It takes a strongly-connected component of the CFG, including a set of annotations
which describe application programmer-definable cost functions on a given set of resources,
and calculates an expression which is an upper bound on the resource usage made by the
program. The algorithm manipulates the same memo table described in Sec. 4.1 in order
to avoid recomputations and access the size relationships already inferred. Without loss of
generality we assume for conciseness in our presentation a single resource.

The algorithm is structured in a very similar way to the size analysis (which also allows us
to draw from it to keep the explanation within space limits): for each element of the strongly-
connected component the algorithm will construct an equation for each block method tha t

3 Note that it is always possible to reduce a system of linear recurrence equations to a single linear
recurrence equation in one variable.

Size parameter relationship equations (normalized)
s ize(ref ,ne, 0)
s ize(ref ,ne, 1)
size(ref, gtfi, 0)
size(ref, gtfi, 2)
size(ref, format, 1)
size(ref, format, 2)

size(ref, send, 1)
size(ref , gtf2, 0)
size(ref , gtf2, 2)
size(ref, sendSms, 1)
size(ref, sendSms, 5)

size(ref, s i / i , 0)
size(ref, stfi, 2)
size(ref, stfi, 3)

size(ref, si/2, 0)
size(ref, si/2, 2)
size(ref, si/2, 3)

size(ref, asg, 0)

size(ref, asg, 1)

size(ref, eg, 0)
size(ref, eg, 1)
size(ref, asg, 0)
s ize(ref ,asg, 1)

Output paramet

< size(ref, sendSms, 1) < s r i
< va l (re f ,ne , 1) < 0
< s ize(ref ,ne, 0) < s r i
< A^tf (ref, s ize(ref, gtfi, 0), _) < s r i — 1
< size(ref, gtfi, 2) < s r i — 1
< max(lookup(mi, s ize , format, 2))(size(ref, format, 2))
< max(sri,6 X s r i) (s r i — 1)
< 6 X (sri - 1)
< size(ref, format, 2) < 6 x (s ri — 1)
< size(ref, gtfi, 0) < s r i
< y4g^(ref, s ize(ref, ffi/2, 0), _) < sri — 1
< size(ref, gi/2, 2) < s r i — 1
< 5s

B
endSms(ref, _, s ize(ref , sendSms, 1), _, _)

< 5 s
B

e n d S m s (re f , s r 0 , s r i - l , s r 2 , s r 3)
< size(ref , ffi/2, 0) < sri
< size(ref, sendSms, 5) < 5 s e n d S m s(ref , sro, s r i — l ,s r2,s r3)
< Altf(ref, s ize(ref, s i / i , 0), _, s ize(ref, stfi, 2))
< sri + 5 B

e n d S m s (r e f , s r 0 , s r i - l , s r 2 , s r 3)
< size(ref, s i / i ,3) < sri + 5B

e n d S m s(ref, s r 0 , s r i - l , s r 2 , s r 3)
< size(ref, format, 2) < 6 x (s ri — 1)
< Astf(reT, size(ref , si/2, 0), _, size(ref , si/2, 2))
< 7 x Sri - 6 + 5 B

e n d S m s (r e f , s r 0 , s r i - l , s r 2 , s r 3)
< size(ref , si/2, 3)
< 7 x Sri - 6 + 5 B

e n d S m s (r e f , s r 0 , s r i - l , s r 2 , s r 3)
< Aasg(ref,size(ref,asg,0))
< 7 x Sri - 6 + 5 B

e n d S m s (r e f , s r 0 , s r i - l , s r 2 , s r 3)

< size(ref, sendSms, 1) < sri
< val(ref ,eg, 1) < 0
< val (ref, asg, 0) < 0
< AaSg(ref,size(ref,asg,0)) < 0

er size functions for builtins (provided through annotations)

A2
gtf(ref,size(ref, gtf, 0),_) < size(ref, gtf, 0) - 1
Aisg(ref ,size(ref, asg, 0)) < s ize(ref, asg, 0)

.4|tf (ref, size(ref, stf, 0), _, size(ref, s i / , 2)) < size(ref, stf, 0) + size(ref, stf, 2)

Simplified size equations and closed form solution

SSendSms(.rei,SrO,Srl

S

S 2 S 3) < / 0 if Sr-l = 0
r ' r _]_ 7 x s r i - 6 + 5 B

e n d S m s (r e f , s r 0 , s r i - l , s r 2 , s r 3) if sri > 0

L n d S m S (r e I , s r O , S r l , S r 2 , S r 3) < 3.5 X S^i - 2.5 X Sr1

Fig. 5. Size equations example

shares the same signature representing the resource usage of that block. To do this, the
algorithm will visit each invoke statement. There are three possible scenarios, covered by
the genStmsRUExpr function. If the signatures of caller and callee(s) belong to the same
strongly-connected component, we are analyzing a recursive invoke statement. Then, we add

resourceAnalysis(SCC, res, mt, CFG) genStmtRUExpr(stmt, res, rat, SCC)
Eqs <— 0 l s c c l Let { i i , . . . ,ik} be the input parameter positions in stmt
foreach sig in SCC {si1,... , Sik} <— {max(lookup(mt, s ize , strat.s\g, ii))

Eqs[sig] <— genBlocksRUExpr(si#, res, rat, SCC, CFG) ,••• ,
Sols <— recEqsSolver(simplifyEqs(£gs)) max(lookup(mt, s ize , stmt.sig, ik))}
foreach sig in SCC if stmt.sig jt SCC then

inse r t (mi , cost,max(Sols[sig])) Costuser <— Aatmt.s\g(res, Six,. .. , Sik)
return mt Costaig> <— lookup(m£, cost, res, stmt.sig)

end Costaig <— Costaig> (six,... ,sik)
return min(Costa;9 , Costuser)

genBlocksRUExpr(si#, res, mt, SCC, CFG) else
Eqs <— 0 return Cost(stmt.s\g,res, Silt... ,Sik)
BMs <- getBlocks(CFG, sig) end
foreach bra e BMs

body <— bra,.body genBlockRUExpr(6m, res, mt)
Costbody <— 0 Let { i i , . . . , i;} be bra input formal parameter positions
foreach stmt e Body {s^ ,... , s^ } <— {lookup(mi, s ize , 6m.id, ii)

Cost stmt <— genStmtRUExpr(stmt, res, mi, SCC) ,... ,
CosUody *- Costbody + Coststmt lookup(mi, s ize , fem.id, it)}

Costbm <— genBlockRUExpr(6m, res, mt) return Cost(bm.\d,res, sit,... , Sit)
Eqs <— Eqs U {Costbm < Costbody}

return Eqs
end

Fig. 6. The resource usage analysis algorithm

to the body resource usage a symbolic resource usage function, in an analogous fashion to
the case of output parameters in recursive invocations during the size analysis.

Example 5. The call (sixth statement) in the upper-most Cel lPhone . sendSms block method
matches the signature of the block method itself and thus it is recursive. The first four param
eter positions are of input type. The upper-bound expression returned by genStmsRUExpr is
Cost(sendSms,$, sro,sri — l,sr2,srs). Note tha t the input size relationships were already
normalized during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a resource usage
function Costaig for the callee has been previously computed, or there is a user annotation
Costusr tha t matches the given signature, or both. In the latter case, the minimum between
these two functions is chosen (i.e., the most precise safe upper bound assigned by the analysis
to the resource usage of the non-recursive invoke s ta tement) .

Example 6. Consider the same block method as in the previous example and the invocation
of Stream . send. The resource usage expression for the statement is defined by the function
*4send($, -, 6 x (sr\ — 1)) since the input parameter at position one is at most six times the size
of the second input formal parameter, as calculated by the size analysis in Fig. 5. Note also
tha t there is a resource annotation QCost ({"cents" , " 2 * s i z e (r l) "}) attached to the block
method describing the behavior of Asend and yielding the expression Costuser — LZ~K(sr-i — 1).
On the other hand, the absence of any callee code to analyze - t h e original method is na t ive -
results in Costaig = oo. Then, the upper bound obtained by the analysis for the statement
is mm(Costaig,Costuser) = Costuser.

Resource usage equations

Cost(sendSms, $, sro, s
oo

H-min(lookup(m£, cost

+min(lookup(m£, cost
OO

H-min(lookup(m£, cost
oo

+min(lookup(m£, cost
OO

H-min(lookup(m£, cost
oo

+min(lookup(m£, cost
oo

oo

ri; ST-2; £7-3) < min(lookup(m£, cost, $,ne),
©Cost ("cents" ,"0") = 0

$,fjtf), Agtf($,8rl,-))
0 oo

$, format) (., Srl - l),Aformat(%,-,Srl - 1))
©Cost ("cents" ," 2*size(rl)") = 12 X (sri — 1)

$,sen<i), Aend($,- ,6 x (sri - 1))
©Cost ("cents" ,"0") = 0

$,gtf), Agtf($, sri, -)) + Cost(sendSras
@Cost("cents" ,"0") = 0

$,Stf), Astf($,Srl,-,-))
@Cost("cents" ,"0") = 0

$,Stf), A i / ($, 8 r l , - , -))
©Cost ("cents" ,"0") = 0

+min(lookup(m£, cost, $, asg), Aasg{§, -))

< 12 x (s r i — 1) + Cost(sendSms, $, sro, sri — 1, sr2, sr3)

Cost(sendSms, $, sro,

oo

0,sr2,Sr3) < min(lookup(m£, cost, $, eq) ,
+ min(lookup(m£, cost, $, asg),

N v '
oo

@Cost(

$, SrC

cents",

($, S r l

, Syl —

0")=0

f , S r 2

@Cost(" cents" ,"0") = 0

-4eq($,0,_))
Aasg($,0))

©Cost ("cents" ,"0") = 0

Simplified resource usage equations and closed form so

Cost(sendSras, $, sro, s r i , sr2, sr3) < I °
\ 12 * s r i — 12 + C ost (sendSms, $, s r

0, Srl

lution

— f, s, 2, S r 3)

Sr3)

< o

if Srl = 0
if Srl > 0

Cost(sendSms,$, sro, Srl, Sr2, Sr3) < 6 X S l̂ — 6 X Srl

Fig. 7. Resource equations example

At this point, the analysis has built a resource usage function (denoted by Costb0dy) that
reflects the resource usage of the statements within the block. Finally, it yields a resource
usage equation of the form Costbiorj~ < Cost^o^y where Costuock is again a symbolic resource
usage function built by replacing each input formal parameter position with its size relations
in that block method. These resource usage equations are simplified by calling simplif yEqs
and, finally, they are solved calling recEqsSolver, both already defined in Sec. 4.1. This
process yields an (in general, approximate, but always safe) closed form upper bound on the
resource usage of the block methods in each strongly-connected component. Note that given
a signature the analysis constructs a closed form solution for every block method that shares
that signature. These solutions approximate the resource usage consumed in or provided by
each block method. In order to compute the total resource usage of the signature the analysis
returns the maximum of these solutions yielding a safe global upper bound.

Example 7. The resource usage equations generated by our algorithm for the CellPhone. sendSms
block methods and the resource denoted by $ (i.e., monetary total cost of sending the SMSs

through a cell phone) are listed in Fig. 7. The computation is in part based on the size rela
tions for each output parameter position in Fig. 5. The resource usage of each block method is
calculated by building an equation such that the left part is a symbolic function constructed
by replacing each parameter position with its size (i.e., Cost(sendSms, $, sro, s r i , sr2, srs)
and Cost(sendSms, $, sro, 0, sr2, srs,)), and the rest of the equation consists of adding the
resource usage of the invoke statements in the block method. These are calculated by com
puting the minimum between the resource usage function inferred by the analysis and the
function provided by the user. The equations corresponding to the recursive and non-recursive
block methods are in the first and second row, respectively. They can be simplified (third
row) and expressed in closed form (fourth row), obtaining a final upper bound for the charge
incurred by sending the list of text messages o f 6 x s ^ - 6 x s , i .

5 Experimental results

We have completed an implementation of our framework, and tested it for a representative
set of benchmarks and resources. Our experimental results are summarized in Table 1. Col
umn Program provides the name of the main class to be analyzed. Column Resource(s)
shows the resource(s) defined and tracked. Column Size T. shows the time (in milliseconds)
required by the size analysis to construct the size relations (including the data dependency
analysis and class hierarchy analysis) and obtain the closed form. Column Res. T . lists the
time taken to build the resource usage expressions for all method blocks and obtain their
closed form solutions. Total T. provides the total times for the whole analysis process. Fi
nally, column Resource Usage Func. provides the upper bound functions inferred for the
resource usage. For space reasons, we only show the most important (asymptotic) component
of these functions, but the analysis yields concrete functions with constants.

Regarding the benchmarks we have covered a reasonable set of data-structures used in
object-oriented programming and also standard Java libraries used in real applications. We
have also covered an ample set of application-dependent resources which we believe can
be relevant in those applications. In particular, not only have we represented high-level
resources such as cost of SMS, bytes received (including a coarse measure of bandwidth, as
a ratio of data per program step), and files left open, but also other low-level (i.e., bytecode
level) resources such as stack usage or energy consumption. The resource usage functions
obtained can be used for several purposes. In program Files (a fragment characteristic of
operating system kernel code) we kept track of the number of file descriptors left open. The
data inferred for this resource can be clearly useful, e.g., for debugging: the resource usage
function inferred in this case (0(n)) denotes that the programmer did not close 0(n) file
descriptors previously opened. In program Join (a database transaction which carries out
accesses to different tables) we decided to measure the number of accesses to such external
tables. This information can be used, e.g., for resource-oriented specialization in order to
perform optimized checkpoints in transactional systems. The rest of the benchmarks include
other definitions of resources which are also typically useful for verifying application-specific
properties: EST (a generic binary search tree, used in [3] where a heap space analysis for
Java bytecode is presented), CellPhone (extended version of program in Figure 1), Client
(a socket-based client application), Dhrystone (a modified version of a program from [20]
where a general framework is defined for estimating the energy consumption of embedded

Program

BST
CellPhone
Client

Dhrystone
Divbytwo
Files

Join
Screen

Resource(s)

Heap usage
SMS monetary cost
Bytes received and
"Bandwidth" required
Energy consumption
Stack usage
Files left open and
Data stored
DB accesses
Screen width

Size T.

250
271
391

602
142
508

334
388

Res. T.

22
17
38

47
13
53

19
38

Total T.

367
386
527

759
219
649

460
536

Resource Usage Func.

0(2 n) n = tree depth
Ofn2) n = packets length
Ofn) n = stream length

0(1) -
Ofn) n = int value
Oflog2fn)) n = int value
Ofn) n = number of files
Ofn x m) m = stream length
Ofn x m) n,m = records in tables
Ofn) n = stream length

Table 1. Times in ms of different phases of the resource analysis and resource usage functions on a
Pentium M 1.73Ghz with 1Gb of RAM.

JVM applications; the complete table with the energy consumption costs that we used can be
found there), DivByTwo (a simple arithmetic operation), and Screen (a MIDP application
for a cellphone, where the analysis is used to make sure that message lines do not exceed
the phone screen width). The benchmarks also cover a good range of complexity functions
(O(l), 0(log(n), 0(n), 0(n2)..., 0 (2") , . . .) and different types of structural recursion such
as simple, indirect, and mutual. The code for these benchmarks and a demonstrator are
available at http: //www. cs . unm. edu/~ j orge/RUA.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the usage that
a Java bytecode program makes of a set of application programmer-definable resources. Our
analysis derives a vector of functions, one for each defined resource. Each of these functions
returns, for each given set of input data sizes, an upper bound on the usage that the whole
program (and each individual method) make of the corresponding resource. Important novel
aspects of our approach are the fact that it allows the application programmer to define the
resources to be tracked by writing simple resource descriptions via source-level annotations,
as well as the fact that we have provided a concrete analysis algorithm and report on an
implementation. The current results show that the proposed analysis can obtain non-trivial
bounds on a wide range of interesting resources in reasonable time. Another important aspect
of our work, because of its impact on the scalability, precision, and automation of the analysis,
is that our approach allows using the annotations also for a number of other purposes such
as stating the resource usage of external methods, which is instrumental in allowing modular
composition and thus scalability. In addition, our annotations allow stating the resource
usage of any method for which the automatic analysis infers a value that is not accurate
enough to prevent inaccuracies in the automatic inference from propagating. Annotations
are also used by the size and resource usage analysis to express their output. Finally, the
annotation language can also be used to state specifications related to resource usage, which
can then be proved or disproved based on the results of analysis following, e.g., the scheme
of [19] thus finding bugs or verifying (the resource usage of) the program.

References

1. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of Java bytecode.
In Proc. ofESOP'07, volume 4421 of LNCS. Springer, 2007.

2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc. of LPAR'04,
volume 3452 of LNAI. Springer, 2005.

3. Elvira Albert, Samir Genaim, and Miguel Gomez-Zamalloa. Heap Space Analysis for Java Byte-
code. In ISMM '07: Proceedings of the 6th international symposium on Memory management,
pages 105-116, New York, NY, USA, October 2007. ACM Press.

4. D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Resource Guarantees
for Smart Devices. In CASSIS'04, LNCS, 2005.

5. David F. Bacon and Peter F. Sweeney. Fast static analysis of C + + virtual function calls. Proc.
of OOPSLA'96, SIGPLAN Notices, 31(10):324-341, October 1996.

6. R. Bagnara, A. Pescetti, A. Zaccagnini, E. Zaffanella, and T. Zolo. Purrs: The Parma Univer
sity's Recurrence Relation Solver, h t t p : / /www.cs .un ip r . i t / pu r r s .

7. I. Bate, G. Bernat, and P. Puschner. Java virtual-machine support for portable worst-case
execution-time analysis. In 5th IEEE Int'l. Symp. on Object-oriented Real-time Distributed
Computing, Apr. 2002.

8. R. Benzinger. Automated higher-order complexity analysis. Theor. Comput. Sci., 318(1-2),
2004.

9. Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C. Necula. Enforcing
resource bounds via static verification of dynamic checks. In ESOP, number 3444 in LNCS,
pages 311-325. Springer-Verlag, 2005.

10. S.J. Craig and M. Leuschel. Self-tuning resource aware specialisation for Prolog. In Proc. of
PPDP'05, pages 23-34. ACM Press, 2005.

11. K. Crary and S. Weirich. Resource bound certification. In POPL. ACM, 2000.
12. S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS, 15(5), 1993.
13. S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Programs.

In Proc. PLDI'90, pages 174-188. ACM, June 1990.
14. S. K. Debray, P. Lopez-Garcia, M. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation

for Logic Programs. In ILPS'97. MIT Press, 1997.
15. J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Automatic identi

fication of timing anomalies for cycle-accurate worst-case execution time analysis. In Proc. of
DDECS. IEEE Computer Society, 2006.

16. G. Gomez and Y. A. Liu. Automatic time-bound analysis for a higher-order language. In PEPM.
ACM Press, 2002.

17. B. Grobauer. Cost recurrences for DML programs. In Int'l. Conf. on Functional Programming,
pages 253-264, 2001.

18. M. Hermenegildo, E. Albert, P. Lopez-Garcia, and G. Puebla. Abstraction Carrying Code and
Resource-Awareness. In Proc. of PPDP'05. ACM Press, July 2005.

19. M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez Garcia. Integrated Program Debugging,
Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preproces
sor). Science of Computer Programming, 58(1-2):115-140, October 2005.

20. Sebastien Lafond and Johan Lilius. Energy consumption analysis for two embedded Java virtual
machines. J. Syst. Archit., 53(5-6):328-337, 2007.

21. D. Le Metayer. ACE: An Automatic Complexity Evaluator. TOPLAS, 10(2), 1988.
22. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.
23. P. Lopez-Garcia, M. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based

Control of Parallelism in Logic Programs. J. of Symbolic Computation, Special Issue on Parallel
Symbolic Computation, 21:715-734, 1996.

