
A Tutorial on Program Development and Optimization
using the Ciao Preprocessor

Abstract

We present in a tutorial fashion CiaoPP, the preprocessor of the Ciao multi-paradigm

programming system, which implements a novel program development framework which

uses abstract interpretation as a fundamental tool. The framework uses modular, incremental

abstract interpretation to obtain information about the program. This information is used

to validate programs, to detect bugs with respect to partial specifications written using as

sertions (in the program itself and/or in system libraries), to generate and simplify run-time

tests, and to perform high-level program transformations such as multiple abstract special

ization, parallelization, and resource usage control, all in a provably correct way. In the case

of validation and debugging, the assertions can refer to a variety of program points such

as procedure entry, procedure exit, points within procedures, or global computations. The

system can reason with much richer information than, for example, traditional types. This

includes data structure shape (including pointer sharing), bounds on data structure sizes,

and other operational variable instantiation properties, as well as procedure-level properties

such as determinacy, termination, non-failure, and bounds on resource consumption (time or

space cost).

1 Introduction

We describe in a tutorial fashion CiaoPP, an implementation of a novel programming

framework which uses extensively abstract interpretation as a fundamental tool in the pro

gram development process. The framework uses modular, incremental abstract interpreta

tion to obtain information about the program, which is then used to validate programs, to

detect bugs with respect to partial specifications written using assertions (in the program

itself and/or in system libraries), to generate run-time tests for properties which cannot be

checked completely at compile-time and simplify them, and to perform high-level program

transformations such as multiple abstract specialization, parallelization, and resource usage

control, all in a provably correct way.

CiaoPP is the preprocessor of the Ciao program development system [3]. Ciao is a

multi-paradigm programming system, allowing programming in logic, constraint, and func

tional styles (as well as a particular form of object-oriented programming). At the heart

of Ciao is an efficient logic programming-based kernel language. This allows the use of

the very large body of approximation domains, inference techniques, and tools for abstract

interpretation-based semantic analysis which have been developed to a powerful and mature

level in this area (see, e.g., [37, 10, 20, 4, 12, 23, 27] and their references). These techniques

and systems can approximate at compile-time, always safely, and with a significant degree

of precision, a wide range of properties which is much richer than, for example, traditional

types. This includes data structure shape (including pointer sharing), independence, storage

reuse, bounds on data structure sizes and other operational variable instantiation proper

ties, as well as procedure-level properties such as determinacy, termination, non-failure, and

bounds on resource consumption (time or space cost).

CiaoPP is a standalone preprocessor to the standard clause-level compiler. It performs

source-to-source transformations. The input to CiaoPP are logic programs (optionally with

assertions and syntactic extensions). The output are error/warning messages plus the trans

formed logic program, with:

• Results of analysis (as assertions).

• Results of static checking of assertions.

• Assertion run-time checking code.

• Optimizations (specialization, parallelization, etc.)

By design, CiaoPP is a generic tool that can be easily customized to different program

ming systems and dialects and allows the integration of additional analyses in a simple way.

As a particularly interesting example, the preprocessor has been adapted for use with the

CHIP CLP(F_D) system. This has resulted in CHIPRE, a preprocessor for CHIP which has

been shown to detect non-trivial programming errors in CHIP programs. More information

on the CHIPRE system and an example of a debugging session with it can be found in [39].

This tutorial is organized as follows: Section 2 gives the "getting started" basics, Sec

tion 3 presents CiaoPP at work for program transformation and optimization, while Sec

tion 4 does the same for program debugging and validation, and Section 5 shows how

CiaoPP performs program analysis.

2 Getting Started

A CiaoPP session consists in the preprocessing of a file. The session is governed by a menu,

where you can choose the kind of preprocessing you want to be done to your file among

several analyses and program transformations available. Clicking on the icon >» in the

buffer containing the file to be preprocessed displays the menu, which will look (depending

on the options available in the current CiaoPP version) something like the "Preprocessor

Option Browser" shown in Figure 1.

V app.pl

File Edit Options Buffers Tools CiaoSys CiaoDbg CiaoPP LPdoc CiaoOpts CiaoHelp Help

e j ^ x o ^ * 1 ^ ^ (3 GA® 6 C ^ ^ j © C @ C
@ C d ©£2 tf *f*

module(app,[app/3],[assertions]).

entry app(A,B,C) : (list(fl), list(B), var(C)).

Preprocessor Option Browser €
Use Saved Menu Configuration:

Select Menu Level:
Select Action Group:

Select Aliasing-Mode analysis:
Select Shape-Type Analysis:

Select Type Output:
Select Numeric Analysis:

Perform Non-Failure Analysis:
Select Cost Analysis:

Perform Determinism Analysis:
Print Program Point Info:

Collapse AI Info:
Menu Configuration Name:

'CiaoPP Interface*

none
naive

analyze
shfr

eterms
all
none
none
none
none
off

on
none

V
(Fundamental)--L1--Al1-

Figure 1: Starting menu for browsing C i a o P P options.

Except for the first and last lines, which refer to loading or saving a menu configuration

(a predetermined set of selected values for the different menu options), each line corresponds

to an option you can select, each having several possible values. You can select either anal

ysis (ana lyze) or assertion checking (c h e c k _ a s s e r t i o n s) or certificate checking

(c h e c k _ c e r t i f i c a t e) or program optimization (op t imize) , and you can later com

bine the four kinds of preprocessing. The relevant options for the a c t i o n g roup selected

http://app.pl

are then shown, together with the relevant flags. A description of the values for each option

will be given as it is used in the corresponding section of this tutorial.

3 Source Program Optimization

We first turn our attention to the program optimizations that are available in CiaoPP. These

include abstract specialization, multiple program specialization, integration of abstract in

terpretation and partial evaluation, and parallelization (including granularity control). All of

them are performed as source to source transformations of the program. In most of them

static analysis is instrumental, or, at least, beneficial (See Section 5 for a tutorial on program

analysis with CiaoPP).

3.1 Abstract Specialization:

Program specialization optimizes programs for known values (substitutions) of the input.

It is often the case that the set of possible input values is unknown, or this set is infinite.

However, a form of specialization can still be performed in such cases by means of abstract

interpretation, specialization then being with respect to abstract values, rather than concrete

ones. Such abstract values represent a (possibly infinite) set of concrete values. For example,

consider the following definition of the property s o r t e c L r i u m _ l i s t / l :

:- prop sorted_num_list/l.

sorted_num_list([]).

sorted_num_list([X]):- number(X).

sorted_num_list([X,Y|Z]):-

number(X), number(Y), X=<Y, sorted_num_list([Y|Z]).

and assume that regular type analysis infers that s o r t e d j n u m _ l i s t / l will always be

called with its argument bound to a list of integers. Abstract specialization can use this

information to optimize the code into:

s o r t e d _ n u m _ l i s t ([]) .

sorted_num_list([_]).

s o r t e d _ n u m _ l i s t ([X , Y | Z]) : - X=<Y, s o r t e d _ n u m _ l i s t ([Y | Z]) .

which is clearly more efficient because no number tests are executed. The optimization

above is based on abstractly executing the number literals to the value t r u e , as discussed

in [27].

3.2 Multiple Specialization:

Sometimes a procedure has different uses within a program, i.e. it is called from different

places in the program with different (abstract) input values. In principle, (abstract) program

specialization is then allowable only if the optimization is applicable to all uses of the pred

icate. However, it is possible that in several different uses the input values allow different

and incompatible optimizations and then none of them can take place. In CiaoPP this prob

lem is overcome by means of "multiple abstract specialization" where different versions of

the predicate are generated for each use. Each version is then optimized for the particular

subset of input values with which it is to be used. The abstract multiple specialization tech

nique used in CiaoPP [43] has the advantage that it can be incorporated with little or no

modification of some existing abstract interpreters, provided they are multivariant (the ab

stract interpreter that CiaoPP uses, called PLAI [37, 5], has this property, see Section 5 for

details).

This specialization can be used for example to improve automatic parallelization) in

those cases where run-time tests are included in the resulting program (see Section 3.6 for

a tutorial on parallelization). In such cases, a good number of run-time tests may be elim

inated and invariants extracted automatically from loops, resulting generally in lower over

heads and in several cases in increased speedups. We consider automatic parallelization of a

program for matrix multiplication using the same analysis and parallelization algorithms as

the q s o r t example used in Section 3.6. This program is automatically parallelized without

tests if we provide the analyzer (by means of an e n t r y declaration) with accurate infor

mation on the expected modes of use of the program. However, in the interesting case in

which the user does not provide such declaration, the code generated contains a large num

ber of run-time tests. We include below the code for predicate m u l t i p l y which multiplies

a matrix by a vector:

multiply ([] ,_, []) .

multiply([VO|Rest],V1,[Result|Others]) :-

(ground(VI),

indep([[VO,Rest] , [VO,Others], [Rest,Result] , [Result,Others]]) ->

vmul(VO,VI,Result) & multiply(Rest,VI,Others)

vmul(VO,VI,Result), multiply(Rest,VI,Others)).

Four independence tests and one groundness test have to be executed prior to executing in

parallel the calls in the body of the recursive clause of m u l t i p l y (these tests essentially

check that the arrays do not contain pointers that point in such a way that would make

the vmul and m u l t i p l y calls be dependent). However, abstract multiple specialization

generates four versions of the predicate m u l t i p l y which correspond to the different ways

this predicate may be called (basically, depending on whether the tests succeed or not). Of

these four variants, the most optimized one is:

multiply3([] ,_, []) .

multiply3([V0|Rest],V1,[Result|Others]) :-

(indep([[Result,Others]]) ->

vmul(VO,VI,Result) & multiply^(Rest,VI,Others)

vmul(VO,VI,Result), multiply3(Rest,VI,Others)).

where the groundness test and three out of the four independence tests have been eliminated.

Note also that the recursive calls to m u l t i p l y use the optimized version m u l t i p l y 3 .

Thus, execution of matrix multiplication with the expected mode (the only one which will

succeed in Prolog) will be quickly directed to the optimized versions of the predicates and

iterate on them. This is because the specializer has been able to detect this optimization as an

invariant of the loop. The complete code for this example can be found in [43]. The multiple

specialization implemented incorporates a minimization algorithm which keeps in the final

program as few versions as possible while not losing opportunities for optimization. For

example, eight versions of predicate vmul (for vector multiplication) would be generated

if no minimizations were performed. However, as multiple versions do not allow further

optimization, only one version is present in the final program.

3.3 Basic Partial Evaluation:

The main purpose oipartial evaluation (see [28] for a general text on the area) is to specialize

a given program w.r.t. part of its input data—hence it is also known as program specializa

tion. Essentially, partial evaluators are non-standard interpreters which evaluate expressions

while enough information is available and residualize them (i.e. leave them in the resulting

program) otherwise. The partial evaluation of logic programs is usually known as partial

deduction [30, 19]. Informally, the partial deduction algorithm proceeds as follows. Given

an input program and a set of atoms, the first step consists in applying an unfolding rule to

compute finite (possibly incomplete) SLD trees for these atoms. This step returns a set of re

sultants (or residual rules), i.e., a program, associated to the root-to-leaf derivations of these

trees. Then, an abstraction operator is applied to properly add the atoms in the right-hand

sides of resultants to the set of atoms to be partially evaluated. The abstraction phase yields

a new set of atoms, some of which may in turn need further evaluation and, thus, the process

is iteratively repeated while new atoms are introduced.

We show a simple example where Partial Evaluation is used to specialize a program

w.r.t. known input data. In this case, the entry declaration states that calls to append will be

performed with a list starting by the prefix [1 , 2 , 3] always. The user program will look as

follows:

:- module(app, [append/3], [assertions]).

:- entry append([1,2,3|L] , LI,Cs) .

append ([] ,X,X) .

append([H|x],Y, [H|z]) :- append(X,Y,Z) .

The default options for o p t i m i z a t i o n can be used to successfully specialize the pro

gram (Figure 2 shows the default optimization menu).

V app.pl

File Edit Options Buffers Tools CiaoSys CiaoDPg CiaoPP LPdoc CiaoOpts CiaoHelp Help

e] ^ x o ^ ^ ^ ^ ^ & (3 Cot*) © C # ^ J 0 C 6 C
^ c d © ^ ^ #

:- module(app, [append/3], [assertions]).

:- entry append([1,2,3|L],L1,Cs).

append([],X,X).
appendt[H|X],Y,[H|Z]) append(X,Y,Z).

app.pl (Ciao)--Ll--flll
Q{kp\ Preprocessor Option Browser &

Use Saved Menu Configuration:
Select Menu Level:

Select Action Group:
Select Optimize:

Select fibs Specialization:
Select Analysis Domain:

Menu Configuration Name:

"CiaoPP Interface"

none
naive

optimize
spec
off
pd

none

(Fundamental)--L10--fill

Figure 2: Default menu options for optimization.

The following resulting partially evaluated program has specialized the third argument

by propagating the first three known values. There is an auxiliary predicate append_2 used

to concatenate the remaining elements of the first and second lists.

http://app.pl
http://app.pl

: - m o d u l e (_ a p p , [a p p e n d / 3] , [a s s e r t i o n s]) .

: - e n t r y a p p e n d ([1 , 2 , 3 | L] , L I , C s) .

a p p e n d ([1 , 2 , 3] ,A , [1 , 2 , 3 | A]) .

a p p e n d ([1 , 2 , 3 , B | C] ,A , [1 , 2 , 3 , B | D]) : -

a p p e n d _ 2 (D , A , C) .

a p p e n d _ 2 (A , A , []) .

a p p e n d _ 2 ([B | D] ,A, [B | C]) : -

a p p e n d _ 2 (D , A , C) .

3.4 Nonleftmost Unfolding in Partial Evaluation of Prolog Pro

grams:

It is well-known that non-leftmost unfolding is essential in partial evaluation in some cases

for the satisfactory propagation of static information (see, e.g., [29]). Let us describe this

feature by means of the following program, which implements an exponentiation procedure

with accumulating parameter:

:- module(exponential_ac, [exp/3], [assertions]) .

:- entry exp(Base,3,_) : int(Base).

exp(Base,Exp,Res):-

exp_ac(Exp,Base,1,Res).

exp_ac(0,_,Res,Res).

exp_ac(Exp,Base,Tmp,Res):-

Exp > 0,

Expl is Exp - 1,

NTmp is Tmp * Base,

exp_ac(Expl,Base,NTmp,Res).

The default options for partial evaluation produce the following non-optimal residual pro

gram where only leftmost unfolding have been used:

:- module(_exponential_ac, [exp/3], [assertions]).

:- entry exp(Base,3,_l) : int(Base).

exp(A,3,B) >

Cisl*A,

exp_ac_l(B,C,A).

exp_ac_l(C,B,A) :-

D is B*A,

exp_ac_2(C,D,A).

exp_ac_2(C,B,A) :-

CisB*A.

where the calls to the builtin "is" cannot be executed and hence they have been residualized.

This prevents the atoms to the right of the calls to "is" from being unfolded and intermediate

rules have to be created.

In order to improve the specialization some specific options of the system must be set.

We proceed by first selecting the e x p e r t mode of the optimization menu (by toggling the

second option of the menu in Figure 2). An overview of the selected options is depicted in

Figure 3. The computation rule n o . s i d e f f _j b allows us to jump over the residual builtins

as long as nonlefmost unfolding is "safe" [1] -in the sense that calls to builtins are pure

and hence the runtime behavior of the specialized program is preserved. We also select the

option mono for abstract specialization so that a post-processing of unfolding is carried out.

The resulting specialized program is further improved:

:- module(_exponential_ac, [exp/3], [assertions]).

:- entry exp(Base,3,_l) : int(Base).

exp(A,3,B) :-

Cisl*A,

D is C*A,

B is D*A.

V \ exponential_ac.pl

File Edit Options Buffers Tools CiaoSys CiaoDPg CiaoPP LPdoc CiaoOpts CiaoHelp

g\ v * \. <& *> . > % % & Ca® £ Q # #
Help

__] 0 C 0 ©
® C © © H tf "f ^ ^
[X e x p _ a c (E x p , B a s e , 1 , R e s) .

• exp_ac 1 0 , _ , R e s , R e s) .
S exp_ac (Exp ,Base ,Tmp ,Res) : -

Exp > 0,
H Expl i s Exp - 1,
! / HTmp I s Tmp * Base ,
- : - - e x p o n e n t i a l a c . p l (C i a o) - - L 8 - - 4 1 %
P (*Afi Preprocessor Option Browser ^

Use Saved Menu C o n f i g u r a t i o n :
S e l e c t Menu L e v e l :

S e l e c t fiction Group:
S e l e c t Op t imize :

S e l e c t fibs S p e c i a l i z a t i o n :
P r e s e r v e F i n i t e F a i l u r e :

Execu te Unif a t Spec Time:
Perform P o s t p r o c e s s i n g Phase :

S e l e c t a n a l y s i s Domain:
S e l e c t Local C o n t r o l :

S e l e c t Computat ion Ru le :
S e l e c t P a r t i a l C o n c r e t i z a t i o n :

Perform Argument F i l t e r i n g :
S e l e c t Global C o n t r o l :
S e l e c t F i l t e r Numbers:

Use Global T r e e s :
P o s t - m i n i m i z a t i o n :

A b s t r a c t Spec D e f i n i t i o n s :
Remove U s e l e s s C l a u s e s :

Menu C o n f i g u r a t i o n Name:

none
expert

optimize
spec
mono
off

on
on
pd

dfhomemhas
bind_ins_jb

off
on

homemb
off
off
none
off
off
none

^% lr
| - :** "CiaoPP I n t e r f a c e * (F u n d a m e n t a l) - - L 4 - - A l l

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

n

Figure 3: Extended menu options for nonleftmost unfolding in partial evaluation.

http://exponential_ac.pl
http://ac.pl

3.5 Integration of Abstract Interpretation and Partial Evalua

tion:

Abstract multiple specialization, abstract interpretation, and partial evaluation techniques are

integrated into CiaoPP and their relationship is exploited in order to achieve greater levels

of optimizations than those obtained by using these techniques alone.

Abstract specialization exploits the information obtained by multivariant abstract inter

pretation where information about values of variables is propagated by simulating program

execution and performing fixpoint computations for recursive calls. In contrast, traditional

partial evaluators (mainly) use unfolding for both propagating values of variables and trans

forming the program. It is known that abstract interpretation is a better technique for propa

gating success values than unfolding. However, the program transformations induced by un

folding may lead to important optimizations which are not directly achievable in the existing

frameworks for multiple specialization based on abstract interpretation. Herein, we illustrate

the CiaoPP's specialization framework [38] which integrates the better information prop

agation of abstract interpretation with the powerful program transformations performed by

partial evaluation. We will use the challenge program of Figure 4.

It is a simple Ciao program which uses Peano's arithmetic. The e n t r y declaration is

used to inform that all calls to the only exported predicate (i.e., main /2) will always be of

the form main (s (s (s (N))) , R) with N a natural number in Peano's representation and

R a variable. The predicate main /2 performs two calls to predicate f o r m u l a / 2 . A call

fo rmula (X, W) performs mode tests g round (X) and v a r (W) on its input arguments

and returns W = (X — 2) x 2. Predicate t w o / 1 returns s (s (0)), i.e., the natural number

2. A call minus (A, B, C) returns C = A — B. However, if the result becomes a negative

number, C is left as a free variable. This indicates that the result is not valid. In turn, a

call t w i c e (A, B) returns B = A x 2. Prior to computing the result, this predicate checks

whether A is valid, i.e., not a variable, and simply returns a variable otherwise.

Figure 5 shows the extended option values needed in the o p t i m i z a t i o n menu to

produce the specialized code shown in Figure 6 using integrated abstract interpretation and

partial evaluation (rules are renamed apart).

We can see that calls to predicates g r o u n d / 1 and v a r / 1 in predicate f o r m u l a / 2

have been removed. For this, we need to select the shf r abstract domain in the menu. The

abstract information obtained from (groundness and freeness) analysis states that such calls

will definitely succeed for initial queries satisfying the e n t r y declaration (and thus, can be

replaced by true). Also, the code for predicates t w i c e / 2 and tw/2 has been merged into

one predicate: tw_l /2 . This is also because the inferred abstract information states that the

call to g r o u n d / 1 in predicate t w i c e / 2 will definitely succeed (and thus can be removed).

Also, the call to predicate v a r / 1 in the first clause of predicate t w i c e / 2 will always fail

:- module(_,[main/2],[assertions]).

:- entry main(N, R) : (gt_two_nat(N), var(R)).

:- regtype gt_two_nat/l.

gt_two_nat(s(s(s(N))))> nat(N).

:- regtype nat/1

nat(O).

nat(s(N)):- nat(N).

main(In,Out)>

formula(In,Tmp),

formula(Tmp,Out),

nonvar(Out).

formula(X,W)>

ground(X),

var(W),

two(T),

minus(X,T,X2),

twice(X2,W).

two(s(s(0))).

minus(X,0,X).

minus(s(Y),s(X),R):-minus(Y,X,R).

minus(0,s(JX),_R).

twice(X,_Y)> var(X).

twice(X,Y)> ground(X), tw(X,Y).

tw(0,0).

tw(s(X),s(s(NX)))> tw(X,NX).

Figure 4: A simple Peano's arithmetic program.

CiaoPP Interface

File Edit Options Buffers Tools Help

o <*« * a ^ • ^ ^ t g ^ ^ ^ f

p Q- module(_,[main/2],[assertions,regtypes]).
:- entry main(H, R) : (gt_two_nat(H), var(R)).

:- regtype gt_two_nat/l.

gt_two_nat(s(s(s(L)))):- nat(L).

: - r e g t y p e n a t / 1 .

(C i a o) - - L l - - T o p -
ft«n Preprocessor Option Browser / ^

Use Saved Menu Configuration:
Select Menu Level:

Select fiction Group:
Select Optimize:

Select fibs Specialization:
Preserve Finite Failure:

Execute Unif at Spec Time:
Perform Postprocessing Phase:

Select Analysis Domain:
Select Local Control:

Select Computation Rule:
Select Partial Concretization:

Perform Argument Filtering:
Select Global Control:
Select Filter Numbers:

Use Global Trees:
Post-minimization:

Abstract Spec Definitions:
Remove Useless Clauses:
Menu Configuration Name:

"CiaoPP I n t e r f a c e *

none
expert

optimize
spec
mono
off

on
on

shfr
dfhomembas

1eftmost
off

on
homemb

off
off
none
a i i
off
none

(Fundamental) - - L 4 - - A l 1

Figure 5: Extended menu options for integration of abstract interpretation and partial evaluation

:- module(_example_sd, [main/2], [assertions , regtypes , nativeprops]).

:- entry main(N,R): (gt_two_nat(N), var(R)).

main(s(s(s(B))),A) :-

tw_l(B,C),

formula. 1 (A, C).

tw_l(0,0).

tw_l(s(A),s(s(B))) :-

tw_l(A,B).

formula_l(0,0).

formula. l(s(s(B)),s(A)) :-

tw_l(A,B).

Figure 6: Optimized Peano's arithmetic program with abstract interpretation and partial evalua

tion integrated.

(and thus, this clause can be removed). These optimizations can be selected in CiaoPP

by choosing the option value spec for S e l e c t Opt imize and the option value a l l

for A b s t r a c t Spec D e f i n i t i o n s in the menu (See Figure 5). These points illustrate

hence the benefits of exploiting abstract information in order to abstractly execute certain

atoms which may in turn, allow unfolding of other atoms.

However, the use of an abstract domain which captures groundness and freeness in

formation will in general not be sufficient to determine that, in the second execution of

f o r m u l a / 2 in predicate ma in /2 , the tests g round (X) and v a r (W) will also succeed.

The reason is that, on success of minus (T, X, X2), X2 cannot be guaranteed to be ground

since m i n u s / 3 succeeds with a free variable in its third argument position. It can be ob

served, however, that for all calls to m inus /3 in the executions described by the e n t r y

declaration, the third clause for m inus /3 is useless. It will never contribute to a success

of m i n u s / 3 since such predicate is always called with a value greater than zero in its first

argument. Unfolding can make this explicit by fully unfolding calls to m i n u s / 3 since they

are sufficiently instantiated, and as a result, the "dangerous" third clause is disregarded. This

unfolding allows concluding that in our particular context all calls to minus / 3 succeed with

a ground third argument. This can be selected in CiaoPP by choosing the values for l o c a l

and g l o b a l control within the optimization menu shown in Figure 5. This illustrates the

importance oi performing unfolding steps in order to prune away useless branches, and that

this will result in improved success information.

3.6 Parallelization:

An example of a non-trivial program optimization performed using abstract interpretation

in CiaoPP is program parallelization [5]. It is also performed as a source-to-source trans

formation, in which the input program is annotated with parallel expressions. The par

allelization algorithms, or annotators [35], exploit parallelism under certain independence

conditions, which allow guaranteeing interesting correctness and no-slowdown properties

for the parallelized programs [26, 14]. This process is complicated by the presence of shared

variables and pointers among data structures at run-time.

Consider the program of Figure 7 (the module and e n t r y directives will be explained

later).

: - m o d u l e (q s o r t , [q s o r t / 2] , [a s s e r t i o n s]) .

: - e n t r y q s o r t (A , B) : (l i s t (A , num), v a r (B)) .

q s o r t ([X | L] , R) : -

p a r t i t i o n (L , X , L I , L 2) ,

q s o r t (L 2 , R 2) , q s o r t (L I , R l) ,

a p p e n d (R l , [x|R2] ,R) .

q s o r t ([] , []) .

p a r t i t i o n ([] , _ B , [] , []) .

p a r t i t i o n ([E | R] , C , [E | L e f t l] , R i g h t) : -

E < C, p a r t i t i o n (R , C , L e f t l , R i g h t) .

p a r t i t i o n ([E|R] , C , L e f t , [E | R i g h t l]) : -

E > C, p a r t i t i o n (R , C , L e f t , R i g h t l) .

a p p e n d ([] , Y s , Y s) .

a p p e n d ([x | X s] , Y s , [x | Z s]) : - append(Xs ,Ys ,Zs) .

Figure 7: A qsort program.

A possible parallelization obtained with the selected options in the menu depicted in

Figure 8 is:

q s o r t ([X|L] ,R) : -

p a r t i t i o n (L , X , L I , L 2) ,

(i n d e p ([[L 1 , L 2]]) -> q s o r t (L 2 , R 2) & q s o r t (L I , R l)

; q s o r t (L 2 , R 2) , q s o r t (L I , R l)) ,

a p p e n d (R l , [x | R 2] , R) .

which indicates that, provided that LI and L2 do not have variables in common (at execution

time), then the recursive calls to q s o r t can be run in parallel.

Figure 8: Menu options for parallelization with no analysis information.

Given the information inferred by the abstract interpreter using, e.g., the mode and in

dependence analysis (see Section 5), which determines that LI and L2 are ground after

p a r t i t i o n (and therefore do not share variables), the independence test and the condi

tional can be simplified via abstract executability and the annotator yields instead:

q s o r t ([X|L] ,R) : -

p a r t i t i o n (L , X , L I , L 2) ,

q s o r t (L 2 , R 2) & q s o r t (L I , R l) ,

a p p e n d (R l , [x | R 2] , R) .

which is much more efficient since it has no run-time test. This test simplification process

is described in detail in [5] where the impact of abstract interpretation in the effectiveness

of the resulting parallel expressions is also studied. The selected menu options needed to

produce this output are depicted in Figure 9.

QaoPP Interface

File Edit Options Buffers Tools Help

0 ^ * 0 ^ ' ^ ^ « $ ^ < 3 ^ ?
:- module(qsort, [qsort/2], [assertions]).

:- entry qsort(A,B) list(num) * var.

D
qsort([X|L],R) :-

partition(L,X,Ll,L2),
qsort(L2,R2),
qsort(Ll,Rl),
append(Rl , [X | R2] , R) .

q s o u t ([] , []) .
q s o r t . p l (C i a o) - - L 4 - - T o p -

fi«*/;) Preprocessor Option Browser /$f

Use Saved Menu Configuration:
Select Menu Level:

Select Action Group:
Select Optimize:

Select Annotation Algorithm:
Select Type of IAP:

Select Local Analysis:
Select Aliasing-Mode Analysis:
Select Granularity Analysis:

Menu Configuration Name:

none
naive

optimize
parallelize

udq
nsiap
local

shfr
none
none

"CiaoPP I n t e r f a c e *
IX (Ho f i l e s need s a v i n g)

(Fundamen ta l) - -L14- -Al1 -

Figure 9: Menu options for parallelization with analysis information.

The tests in the above example aim at strict independent and-parallelism. However, the

annotators are parameterized on the notion of independence. Different tests can be used

for different independence notions: non-strict independence [9], constraint-based indepen

dence [14], etc.

http://qsort.pl

Moreover, all forms of and-parallelism in logic programs can be seen as independent and-

parallelism, provided the definition of independence is applied at the appropriate granularity

level.l

3.7 Resource and Granularity Control:

Another application of the information produced by the CiaoPP analyzers, in this case cost

analysis, is to perform combined compile-time/run-time resource control. An example of

this is task granularity control [33] of parallelized code. Such parallel code can be the output

of the process mentioned above or code parallelized manually.

In general, this run-time granularity control process involves computing sizes of terms

involved in granularity control, evaluating cost functions, and comparing the result with

a threshold2 to decide for parallel or sequential execution. Optimizations to this general

process include cost function simplification and improved term size computation, both of

which are illustrated in the following example.

Consider again the qsort program in Figure 7. We use CiaoPP to perform a transfor

mation for granularity control. An overview of the selected menu options to achieve this is

depicted in Figure 10.

In the resulting optimized code, CiaoPP adds a clause:

" q s o r t (_1,_2) : - g _ q s o r t (_1,_2) ." (to preserve the original entry point) and

produces g _ q s o r t / 2 , the version of q s o r t / 2 that performs granularity control (s _ q s o r t / 2

is the sequential version):

g _ q s o r t ([X | L] , R) : -

partition_o3_4(L,X,L1,L2,_1,_2),

(_2>7 -> (_1>7 -> g_qsort(L2,R2) & g_qsort(LI,Rl)

; g_qsort(L2,R2), s_qsort(LI,Rl))

; (_1>7 -> s_qsort(L2,R2), g_qsort(LI,Rl)

; s_qsort(L2,R2), s_qsort(LI,Rl))),

append(Rl, [x|R2],R) .

g_qsort ([],[]).

Note that if the lengths of the two input lists to the qsort program are greater than a

threshold (a list length of 7 in this case) then versions which continue performing granular

ity control are executed in parallel. Otherwise, the two recursive calls are executed sequen

tially. The executed version of each of such calls depends on its grain size: if the length

'For example, stream and-parallelism can be seen as independent and-parallelism if the independence of "bind
ings" rather than goals is considered.

2This threshold can be determined experimentally for each parallel system, by taking the average value resulting
from several runs.

QaoPP Interface

File Edit Options Buffers Tools Help

O ^ * o ^ - ^ ^%% a ^i
:- module(qsort, [qsort/2], [assertions]).

:- entry qsort(fi,B) : list(num) * var.

D
qsort([X|L],R) :-

partition(L,X,Ll,L2),
qsort(L2,R2),
qsort(Ll,Rl), qsort.pl tCiao)--L4--Top

£tA(i) Preprocessor Option Browser g j

Use Saved Menu Configuration: none
Select Menu Level: naive

Select Action Group: optimize
Select Optimize: parallelize

Select annotation algorithm: udq
Select Type of IfiP: nsiap

Select Local analysis: local
Select filiasing-Mode analysis: shfr
Select Granularity analysis: I gr

Perform Non-Failure analysis: nfq
Select Cost analysis: both

Menu Configuration Name: none

K V
"CiaoPP Interface*

Beginning ol Duller
(Fundamental)--L1--Al1

Figure 10: Menu options for parallelization with granularity control.

http://qsort.pl

of its input list is not greater than the threshold then a sequential version which does not

perform granularity control is executed. This is based on the detection of a recursive invari

ant: in subsequent recursions this goal will not produce tasks with input sizes greater than

the threshold, and thus, for all of them, execution should be performed sequentially and,

obviously, no granularity control is needed.

In general, the evaluation of the condition to decide which predicate versions are exe

cuted will require the computation of cost functions and a comparison with a cost threshold

(measured in units of computation). However, in this example a test simplification has been

performed, so that the input size is simply compared against a size threshold, and thus the

cost function for qsort does not need to be evaluated.3 Predicate p a r t i t i o n _ o 3 _ 4 / 6 :

p a r t i t i o n _ o 3 _ 4 ([] , _B , [] , [] , 0, 0) .

p a r t i t i o n _ o 3 _ 4 ([E | R] , C , [E | L e f t l] , R i g h t , _ 1 , _ 2) : -

E<C, p a r t i t i o n _ o 3 _ 4 (R , C , L e f t l , R i g h t , _ 3 , _ 2) , _1 i s _ 3 + l .

p a r t i t i o n _ o 3 _ 4 ([E | R] , C , L e f t , [E |R igh t1] , _ 1 , _ 2) : -

E>=C, p a r t i t i o n _ o 3 _ 4 (R , C , L e f t , R i g h t l , _ l , _ 3) , _2 i s _ 3 + l .

is the transformed version of p a r t i t i o n / 4 , which "on the fly" computes the sizes of its

third and fourth arguments (the automatically generated variables _1 and _2 represent these

sizes respectively) [32].

4 Program Debugging and Assertion Validation

CiaoPP is also capable of combined static and dynamic validation, and debugging using the

ideas outlined so far. To this end, it implements the framework described in [24, 39] which

involves several of the tools which comprise CiaoPP. Figure 11 depicts the overall architec

ture. Hexagons represent the different tools involved and arrows indicate the communication

paths among them.

Program verification and detection of errors is first performed at compile-time by infer

ring properties of the program via abstract interpretation-based static analysis and comparing

this information against (partial) specifications written in terms of assertions (see [27] for a

detailed description of the sufficient conditions used for achieving this CiaoPP functional

ity).

Both the static and the dynamic checking are provably safe in the sense that all errors

flagged are definite violations of the specifications.

Figure 11: Architecture of the Preprocessor

4.1 Assertions and Properties:

Assertions are a means of specifying properties which are (or should be) true of a given

predicate, predicate argument, and/or program point. If an assertion has been proved to be

true it has a prefix t r u e . Assertions can also be used to provide information to the analyzer

in order to increase its precision or to describe predicates which have not been coded yet

during program development. These assertions have a t r u s t prefix [4]. For example, if we

commented out the use_module/2 declaration in Figure 12, we could describe the mode

of the (now missing) geq and I t predicates to the analyzer for example as follows:

:- trust pred geq(X,Y) => (ground(X), ground(Y)).

:- trust pred lt(X,Y) => (ground(X), ground(Y)).

The same approach can be used if the predicates are written in, e.g., an external lan

guage such as, e.g., C or Java. Finally, assertions with a check prefix are the ones used to

specify the intended semantics of the program, which can then be used in debugging and/or

validation, as we will see later in this section. Interestingly, this very general concept of

assertions is also particularly useful for generating documentation automatically (see [21]

for a description of their use by the Ciao auto-documenter).

Assertions refer to certain program points. The t r u e p r e d assertions above specify in

a combined way properties of both the entry (i.e., upon calling) and exit (i.e., upon success)

points of all calls to the predicate. It is also possible to express properties which hold at

points between clause literals. As an example of this, the following is a fragment of the

output produced by CiaoPP for the program in Figure 12 when information is requested at

this level:
3This size threshold will obviously be different if the cost function is.

: - m o d u l e (q s o r t , [q s o r t / 2] , [a s s e r t i o n s]) .

: - u s e _ m o d u l e (c o m p a r e , [g e q / 2 , l t / 2]) .

q s o r t ([X|L] ,R) : -

p a r t i t i o n (L , X , L I , L 2) ,

q s o r t (L 2 , R 2) , q s o r t (L I , R l) ,

a p p e n d (R l , [x|R2] ,R) .

q s o r t ([] , []) .

p a r t i t i o n ([] , _ B , [] , []) .

p a r t i t i o n ([E | R] , C , [E | L e f t l] , R i g h t) : -

I t (E , C) , p a r t i t i o n (R , C , L e f t l , R i g h t) .

p a r t i t i o n ([E|R] , C , L e f t , [E | R i g h t l]) : -

g e q (E , C) , p a r t i t i o n (R , C , L e f t , R i g h t l) .

a p p e n d ([] , Y s , Y s) .

a p p e n d ([x | X s] , Y s , [x | Z s]) : - append(Xs ,Ys ,Zs) .

Figure 12: A modular qsort program.

q s o r t ([X|L] ,R) : -

true((ground(X),ground(L),var(R),var(LI),var(L2),var(R2), ...

partition(L,X,Ll,L2),

true((ground(X),ground(L),ground(LI),ground(L2),var(R),var(R2),

qsort(L2,R2), ...

In CiaoPP properties are just predicates, which may be builtin or user defined. For exam

ple, the property v a r used in the above examples is the standard builtin predicate to check

for a free variable. The same applies to g round and mshare. The properties used by

an analysis in its output (such as va r , ground, and mshare for the previous mode anal

ysis) are said to be native for that particular analysis. The system requires that properties

be marked as such with a p r o p declaration which must be visible to the module in which

the property is used. In addition, properties which are to be used in run-time checking (see

later) should be defined by a (logic) program or system builtin, and also visible. Properties

declared and/or defined in a module can be exported as any other predicate. For example:

:- prop list/1.

list([]) .

list([|L]) :- list (L) .

or, using the functional syntax package, more compactly as:

:- prop list/1, list := [] | [_|list].

defines the property "list". A list is an instance of a very useful class of user-defined proper

ties called regular types [46, 11,20, 18,45], which herein are simply a syntactically restricted

class of logic programs. We can mark this fact by stating ": - r e g t y p e 1 i s t / 1 . " in

stead of ": - p r o p 1 i s t / 1 . " (this can be done automatically). The definition above can

be included in a user program or, alternatively, it can be imported from a system library, e.g.:

: - u s e . m o d u l e (l i b r a r y (l i s t s) , [l i s t / 1]) .

The idea of using analysis information for debugging comes naturally after observing

analysis outputs for erroneous programs. Consider the program in Figure 13.

The result of regular type analysis for this program includes the following code:

:- true pred qsort(A,B)

: (term(A), term(B))

=> (list(A,tll3), list(B,~x)).

:- regtype tll3/l.

tll3(A) :- arithexpression(A).

tll3([]) .

tll3([A|B]) :- arithexpression(A), list (B,tll3) .

tll3 (e) .

where a r i t h e x p r e s s i o n is a library property which describes arithmetic expressions

and l i s t (B , ~ x) means "a list of x's." A new name (t l l 3) is given to one of the inferred

types, and its definition included, because no definition of this type was found visible to

the module. In any case, the information inferred does not seem compatible with a correct

definition of q s o r t , which clearly points to a bug in the program.

4.2 Static Checking of Assertions in System Libraries:

In addition to manual inspection of the analyzer output, CiaoPP includes a number of au

tomated facilities to help in the debugging task. For example, CiaoPP can find incompati

bilities between the ways in which library predicates are called and their intended mode of

use, expressed in the form of assertions in the libraries themselves. Also, the preprocessor

can detect inconsistencies in the program and check the assertions present in other modules

used by the program.

For example, we can turn on compile-time error checking and selecting type and mode

analysis for our tentative q s o r t program in Figure 13, by selecting the action check.assertions

: - module(qsort , [q s o r t / 2] , [a s s e r t i o n s]) .
: - en t ry qsort(A,B) : (l i s t (A , num), v a r (B)) .

qsor t ([X |L] ,R) : -

p a r t i t i o n (L , L I , X , L 2) ,

qsor t (L2 ,R2) , q s o r t (L I , R l) ,

append(R2, [x|Rl] ,R) .

q so r t ([] , []) .

p a r t i t i o n ([] ,_B, [] , []) .

p a r t i t i o n ([e | R] , C , [E | L e f t l] , R i g h t) : -

E < C, !, p a r t i t i o n (R , C , L e f t l , R i g h t) .

p a r t i t i o n ([E|R] ,C,Lef t , [E |Right l]) : -

E >= C, p a r t i t i o n (R , C , L e f t , R i g h t l) .

append ([] ,X,X) .

append([H|x],Y, [H|z]) :- append(X,Y,Z) .

Figure 13: A tentative qsort program.

as shown in Figure 14. By default, the option Perform Compile-Time Checks is set to auto,

which means that the system will automatically detect the analyses to be performed in or

der to check the program, depending on the information available in the program assertions

(in the example in Figure 13, the entry assertion informs how the predicate q s o r t / 2 will

be called using types and modes information only). Using the default options, and setting

Report Non-Verified As srts to error, we obtain the following messages (and the system high

lights the line which produces the first of them, as shown in Figure 15):

WARNING (preproc_errors): (Ins 3-7) goal partition(L,LI,X,L2) at

literal 1 does not succeed!

WARNING (ctchecks_messages): (Ins 11-12) the head of clause

'partition/4/2' is incompatible with its call type

Head: partition([e|R],C,[E|Leftl],Right)

Call Type: partition(list(num),term,num,term)

ERROR (ctchecks_messages): (Ins 13-14) at literal 1 false calls assertion:

:- calls >=(A,B) : [[ground(A),ground(B)]]

because on call of >=(A,B) : mshare([[B],[A]]),var(B)

WARNING (preproc_errors): (Ins 13-14) goal >=(E,C) at literal 1

r | qsortZ.pl I X

File Edit Options Buffers Tools CiaoSys CiaoDbg Ci aoPP LPdoc CiaoOpts

e] ^ * i € - > tB^(3Cf l !)6C
CiaoHelp Help

-s* A 0 C 0 C
® C@ ©H tf f4^ #

3Jsort([X|L],R) :-
j p a r t i t i o n ^ , L I , X , L 2) ,

J qsor t (L2 ,R2) , q s o r t (L l , R l) ,
append(R2 , [x |R l] ,R) .

• q s o r t ([] , []) .

\f p a r t i t i o n ([] , _ B , [] , []) .
- : - - q s o r t 2 . p l (C iao) - -L4- -19
R £&•) P r eP r o c e s s o r

Use Saved Menu Configurat ion:
S e l e c t Menu Level :

S e l e c t Act ion Group:
Perforin Compile-Time Checks:

Report Non-Verif ied a s s e t s :
I n s e r t Run-Time Checks:

Generate C e r t i f i c a t e :
Menu Configurat ion Name:

/
- :** "CiaoPP I n t e r f a c e * (Fundame

•%

Option Browser

none
naive

m
check assertions

auto
error

off
off
none

V
n t a l) - - L 1 0 - - f l l l -

V

V

V

!i

Figure 14: Static compile-time checking of assertions in system libraries.

does n o t s u c c e e d !

where the first message refers to the lines of the first clause of q s o r t / 2 , the second one

to the second clause of p a r t i t i o n / 4 , and the last two messages correspond to the third

clause p a r t i t i o n / 4 .

First and last messages warn that all calls to p a r t i t i o n and >=/2 will fail, something

normally not intended (e.g., in our case). The error message indicates a wrong call to a

builtin predicate, which is an obvious error. This error has been detected by comparing the

mode information obtained by global analysis, which at the corresponding program point

indicates that the second argument to the call to >=/2 is a variable, with the assertion:

: - check c a l l s A>=B : (g round(A) , g r o u n d (B)) .

which is present in the default builtins module, and which implies that the two arguments

to >=/2 should be ground when this arithmetic predicate is called. The message signals

a compile-time, or abstract, incorrectness symptom [7], indicating that the program does

not satisfy the specification given (that of the builtin predicates, in this case). Checking the

indicated call to p a r t i t i o n and inspecting its arguments we detect that in the definition

http://qsortZ.pl
http://qsort2.pl

V qsort2.pl

File Edit Options Buffers Tools CiaoSys CiaoDbg CiaoPP LPdoc CiaoOpts CiaoHelp Help

$ <& o *> ¥- f£> (3 Co© 6 € ^ ^ j © C @ C
@0@©Ott?

:- inodule(_, [qsort/2], [assertions]).
:- entry qsort(A,B) : (list(fl,num), var(B)).

qsort([X|L],R) :-
partition(L,Ll,X,L2),
qsort(L2,R2), qsort(Ll,Rl),
append(R2,[x|Rl],R). |

qsort([],[]).

partition([], ,[],[]).
partition([e|R],C,[E|Leftl],Right):-

E < C, !, partition(R,CLeftl,Right) .
partition([E|R],C, Left,[E|Rightl]):-

E >= C, partition(R,C,Left,Riqhtl).

append([],X,X).
appendt[H|X],¥,[H|Z]): append(X,Y,Z).

A {In
/home/debugging/qsort2.pi

WARNING (preproc_errors): (Ins 3-7) goal qsort2:partition(l_L1,X,L2) at
Q l i t e r a l 1 does not succeed!
}
{In

/home/debugging/qsort2.pi
WARNING (ctchecksmessages): (Ins 11-12) the head of clause

' q s o r t 2 : p a r t i t i o n / 4 / 2 ' i s incompatible with i t s c a l l type
Head: q so r t2 :pa r t i t i on ([e |R] ,C , [E |Le f t l] ,R igh t)
Call Type: qsor t2:par t i t ion(basic_props: l is t (num), term,num,term)

}
{In

/home/debugging/qsort2.pi
ERROR (ctchecksmessages): (Ins 13-14) at literal 1 not verified calls
a s se r t ion :

:- c a l l s arithmetic:>=(_62811,_62795) : • M J U M . U J A h M (Ciao/CiaoPP/LPdoc Listener: run)--L253--93%

Figure 15: Results of compile-time checking of assertions in system libraries.

of q s o r t , p a r t i t i o n is called with the second and third arguments in reversed order -

the correct call is p a r t i t i o n (L ,X,L1 , L2).

After correcting this bug, we proceed to perform another round of compile-time check

ing, which continues producing the following message:

WARNING: Clause 'partition/4/2' is incompatible with its call type

Head: partition([e|R],C,[E|Leftl],Right)

Call Type: partition(list(num),num,term,term)

This time the error is in the second clause of p a r t i t i o n . Checking this clause we see

that in the first argument of the head there is an e which should be E instead. Compile-time

checking of the program with this bug corrected does not produce any further warning or

error messages.

http://qsort2.pl

Figure 16: Results of compile-time checking after correcting first errors.

4.3 Static Checking of User Assertions and Program Validation:

Though, as seen above, it is often possible to detect error without adding assertions to user

programs, if the program is not correct, the more assertions are present in the program the

more likely it is for errors to be automatically detected. Thus, for those parts of the program

which are potentially buggy or for parts whose correctness is crucial, the programmer may

decide to invest more time in writing assertions than for other parts of the program which

are more stable. In order to be more confident about our program, we add to it the following

check assertions:4

:- calls qsort(A,B) : list(A, num). % Al

:- success qsort(A,B) => (ground(B), sorted_num_list(B)). % A2

:- calls partition(A,B,C,D) : (ground(A), ground(B)). % A3

:- success partition(A,B,C,D) => (list(C, num),ground(D)). % A4

:- calls append(A,B,C) : (list(A,num),list(B,num)). % A5

4The check prefix is assumed when no prefix is given, as in the example shown.

