
An architectural model for software testing lesson learned systems 
Javier Andradea,1

> Juan Ares3,1, Maria-Aurora Martinezb'2, Juan Pazosc'3, Santiago Rodriguezal, 
Julio Romerac'3, Sonia Suarez3* 
a University of A Coruna, Campus de Elvina, s/n, 15071 A Coruna, Spain 
b UDIMA-Madrid Open University, Camino de la Fonda, 20, 28400 Collado-Villalba, Madrid, Spain 
c Technical University of Madrid, Campus de Montegancedo, s/n, 28660 Boadilla del Monte, Madrid, Spain 

A B S T R A C T 

Context: Software testing is a key aspect of software reliability and quality assurance in a context where 
software development constantly has to overcome mammoth challenges in a continuously changing 
environment. One of the characteristics of software testing is that it has a large intellectual capital com­
ponent and can thus benefit from the use of the experience gained from past projects. Software testing 
can, then, potentially benefit from solutions provided by the knowledge management discipline. There 
are in fact a number of proposals concerning effective knowledge management related to several soft­
ware engineering processes. 
Objective: We defend the use of a lesson learned system for software testing. The reason is that such a 
system is an effective knowledge management resource enabling testers and managers to take advantage 
of the experience locked away in the brains of the testers. To do this, the experience has to be gathered, 
disseminated and reused. 
Method: After analyzing the proposals for managing software testing experience, significant weaknesses 
have been detected in the current systems of this type. The architectural model proposed here for lesson 
learned systems is designed to try to avoid these weaknesses. This model (i) defines the structure of the 
software testing lessons learned; (ii) sets up procedures for lesson learned management; and (iii) sup­
ports the design of software tools to manage the lessons learned. 
Results: A different approach, based on the management of the lessons learned that software testing 
engineers gather from everyday experience, with two basic goals: usefulness and applicability. 
Conclusion: The architectural model proposed here lays the groundwork to overcome the obstacles to 
sharing and reusing experience gained in the software testing and test management. As such, it provides 
guidance for developing software testing lesson learned systems. 

1. Introduction 

Software testing is the dynamic verification of actual against ex­
pected program behavior on a finite set of test cases, suitable se­
lected from the usually infinite execution domain [1]. Software 
has become more and more widespread and is now habitually used 
in critical and complex application domains, making this process 
increasingly important, critical, costly and complex, and calling 
for greater quality and reliability. Early studies claimed that the 
testing process accounted for 50% of total project development 

* Corresponding author. Tel: +34 981167000; fax: +34 981167160. 
E-mail addresses: jag@udc.es (J. Andrade), juanar@udc.es (J. Ares), mariaauror-

a.martinez@udima.es (M.-A. Martinez), jpazos@fi.upm.es (J. Pazos), santi@udc.es (S. 
Rodriguez), julio_romera@elcorteingles.es (J. Romera), ssuarez@udc.es (S. Suarez). 

1 Tel: +34 981167000; fax: +34 981167160. 
2 Tel: +34 918561699; fax: +34 918561697. 
3 Tel: +34 913366896; fax: +34 913524819. 

costs [2] or even more for highly critical software. The emergence 
of high-level languages, and the maintenance and upgrading of 
existing software systems has meant that the proportion of t ime 
spent on testing has increased (see, e.g., [3]). Also, the early testing 
techniques compiled by Myers [4] have been joined by new testing 
models (model-based testing [5], agile testing [6], etc.) and new 
testing techniques (machine learning techniques [7], adaptive 
random techniques [8], etc.). Additionally, software has been 
applied to new domains and has been output using new develop­
ment models. All this really does make software testing an increas­
ingly more complex and, above all, knowledge-intensive activity 
[9]. 

During testing planning, testing team members mainly select 
testing strategies, prioritize tests, define regression strategies and 
select the best testing techniques. Knowledge of existing methods 
and techniques is necessary but not enough to efficiently perform 
these tasks. Sound empirical knowledge and experience-based 
practice criteria are also required to gain a deeper understanding 

mailto:jag@udc.es
mailto:juanar@udc.es
mailto:mariaaurora.martinez@udima.es
mailto:mariaaurora.martinez@udima.es
mailto:jpazos@fi.upm.es
mailto:santi@udc.es
mailto:julio_romera@elcorteingles.es
mailto:ssuarez@udc.es


of testing technique behavior [9,10]. Testing team members make 
use of this experience with more or less insight to improve their 
own job performance. The problem is, though, that the experience 
gained from different projects is confined to each individual and is 
not known to or shared by other team members (at least not for­
mally). Testing engineers perform similar tasks and come up 
against similar problems day in day out as they work on different 
projects. However, testing teams do not make use or take advan­
tage of the knowledge acquired and the experience gained, as this 
is confined to each individual. Therefore, the same mistakes are 
made over again, even though there are individuals in the testing 
organization with the knowledge and experience required to rule 
out or stop this. Likewise, successful practices are not repeated. 
Each testing project, each new technique for use, each new plat­
form is a source of a lot of knowledge and experience. This knowl­
edge and experience can be applied again in the future if the 
organization is capable of extracting that individual knowledge 
and making it available to and promoting its use by anyone who 
has need of it. This is the main aim of the knowledge management 
(KM) discipline. 

This paper encourages the use of a software testing lesson 
learned (LL) system as a component of organizational learning to 
improve and promote the dissemination and reuse of individual 
experience gained from technical and managerial software testing 
activities. The proposed architectural model for software testing LL 
systems (i) defines the structure of the LLs, (ii) sets up the proce­
dures for managing LLs, and (iii) supports the design of LL manage­
ment software tools. In fact, we have developed a prototype 
software testing LL system implementing the core of the proposed 
model, that testing teams have used and evaluated. Accordingly, 
this paper has been structured as follows. Section 2 introduces 
the KM discipline, and discusses its applicability to software test­
ing, plus the resulting benefits. Section 3 introduces LL systems 
and outlines the benefits of their use as a KM enabler in software 
testing, analyzing the latest major initiatives. Section 4 details 
the proposed architectural model, placing special emphasis on 
the design of its repository and the LL life-cycle activities. Section 
5 details the prototype built and, finally, Section 6 lists the 
conclusions. 

2. KM and software testing 

2A. KM foundations 

The term knowledge management was first coined in 1986 [11] 
by Wiig, and later formalized in 2004 by Holsapple and Joshi in 
their Knowledge Management Ontology (KMO) [12]. According to 
Wiig, its main objectives, which are in consonance with the DKMC1 
definition provided in KMO and other works (e.g., [13]), are [14]: (i) 
to make the enterprise act as intelligently as possible to secure its via­
bility and overall success, and (ii) to otherwise realize the best value of 
its knowledge assets. 

A key aspect in any KM program is the definition of a corporate 
memory. A corporate memory specifies and supports the represen­
tation and exchange of key corporate knowledge [15-17] (see 
KMO's knowledge definition in DKMC6). Initially strategies from 
outside KM (see e.g., [18]), primarily knowledge-based and docu­
ment-based approaches, were used to build corporate memories. 
Of the knowledge-based strategies, ontologies were significantly 
exploited. Note, however, that (i) a corporate memory is different 
from a knowledge-based system [18], and (ii) an ontology, 
although created to share and reuse knowledge, is concerned not 
with the dynamic but just the static knowledge [19] of a particular 
domain [20]. Although paper-based or electronic documents are 
potentially constitutive of a document-based corporate memory, 
they are considered as only a first step in the implementation of 
such repositories [21]. Very often documents are not well-indexed 
or constitute a specific and abridged bibliography for each employ­
ee [18]. 

As Fig. 1 shows, from the KM perspective, and considering how 
knowledge can be provided, a corporate memory contains two dif­
ferent repositories [22-24]: (i) a corporate knowledge base, pro­
viding direct access to the knowledge made explicit it contains, 
and (ii) a yellow pages repository, providing the location of and ac­
cess to relevant knowledge that is not explicit in the above 
repository. 

The corporate knowledge base includes two elements: 
knowledge and meta-knowledge (i.e., LL). Knowledge refers to 
the knowledge of a particular organizational environment 

Fig. 1. Corporate memory components. 



(e.g., knowledge about how to undertake a particular task). There 
are several definitions of meta-knowledge, since it has been de­
scribed as guidelines, tips, or checklists of what went right or 
wrong in a particular situation [25] (e.g., heuristics about how to 
undertake a particular task). All these definitions however focus 
a common aspect: knowledge derived from (gained by) experience. 
We accept this definition and regard LLs as referring to the knowl­
edge that each person possesses in the shape of experience. Note 
that a LL (meta-knowledge) can be adopted as knowledge if it gen­
erates competitive advantages: it evolves from meta-knowledge 
into an actual modus operandi (see, e.g., [15], which gives an exam­
ple of this evolution out of the software testing domain). For this 
reason, often no distinction is made between the two concepts, 
and they are wrongly taken to mean the same thing. 

The second repository, yellow pages, involves publishing the 
human (e.g., an expert) and non-human (e.g., a web page) sources 
that have additional knowledge; that is, key knowledge that is not 
specified in the above repository. Thus, for example, the publica­
tion of the contact details of an expert who can provide help with 
a particular subject is considered within the scope of this reposi­
tory. Note that a KM program should not try to explicit all the 
knowledge and LLs that exist in the organization (corporate knowl­
edge) in the corporate knowledge base. This would not be a feasi­
ble goal due to the associated costs since every organization has a 
huge volume of relevant knowledge. This is why this second repos­
itory is so useful. 

2.2. Software testing as a knowledge-intensive activity 

Software engineering is a knowledge-intensive activity [26], 
simultaneously involving knowledge-intensive subactivities: 
requirements elicitation, risk management and testing, among oth­
ers. To perform these activities, a software development organiza­
tion's key asset is the knowledge, experience and creativity of its 
developer teams. Project focus, staff turnover, plus the develop­
ment and release of new platforms, techniques and methods, and 
the application of software to new domains, all mean, however, 
that the knowledge and experience acquired by software team 
members should be disseminated across work groups and not 
confined to individuals: effective knowledge sharing is a critical 
success factor, and KM is an enabler of organizational learning 
[26,27]. 

The documents generated by the testing processes (i.e., techni­
cal knowledge) contain part of the knowledge used in software 
testing: test plan, test design specification, test case specification, 
test incidents, test logs, etc. Another part is, of course, embedded 
in the testing procedures, techniques and methodologies (i.e., 
methodological knowledge). But a third type of knowledge is re­
quired to implement the above two: meta-knowledge. Etymologi-
cally speaking, meta-knowledge is knowledge about knowledge 
(LLs) [15,27], that is, knowledge about software test applicability, 
effectiveness for particular testing or software types, risks and real 
benefits, etc. It is LLs that provide the knowledge required for the 
effective application of the technical and methodological knowl­
edge. In other words, meta-knowledge is aimed at the application 
of knowledge. 

The biggest problem encountered in this respect is the difficulty 
for sharing and reusing the experience that each software testing 
engineer gains from testing at the corporate level. In actual fact, 
many software testing experiences and skills are taken in by only 
a few people, and do not become public knowledge [28]. This is 
probably caused to some extent by the fact that the knowledge 
associated with software testing has certain peculiarities. First, 
most testers are self-taught; many have never read a book on the 
subject [29], and testers seldom receive the lifelong training neces­
sary to effectively do their jobs [30], as there appears to be a belief 

that testers do not require any specialized training [31]. In actual 
fact, test jobs are often consolation prizes for people not considered 
good enough to be recruited as software developers [29]. It is a fact 
that testers have very limited knowledge of the techniques that are 
currently at their disposal [32]. On the other hand, testing does not 
receive as much attention as other software development activities 
in either research or business practice, meaning that industry test­
ing practices are generally not very sophisticated or effective, and 
leave a lot to be desired [33]. Technology transfer between re­
search and industry is insufficient, but so is intra-organizational 
knowledge transfer for such a critical and knowledge-intensive 
activity [28]. 

2.3. Usefulness of KM in software testing 

To counter the above and institutionalize knowledge, we need a 
KM program [15]. The aim of a KM program is to enable individuals 
to solve problems more efficiently. This will be possible due to bet­
ter decision-making criteria provided especially by either their 
own or others' past experiences. To be precise, organizational KM 
has two dimensions: (i) it aims to transfer knowledge existing at 
the individual level to the organizational level; and (ii) it aims to 
explicit the knowledge gained from experiences, as a first step 
for dissemination and later conversion to tacit knowledge. This is 
what Nonaka et al. term the process of externalization and inter­
nalization [34]. 

KM applied to software engineering has several uses. First, it 
provides for continuous software process, and thus product, 
improvement through the modification and adaptation of pro­
cesses based on practical experience [35]. Second, it helps to rise 
to the challenges set by new work techniques and methodologies 
and to share the benefits and outcomes of their use in new appli­
cation domains [36]. Third, it retains the knowledge in a corporate 
memory, including everything pertaining to processes, products, 
domains, techniques, methods, plans, strategies and objectives, as 
a means for storing past knowledge for reuse [17]. Finally, it insti­
tutionalizes best software development practices in the organiza­
tion [37]. 

The above advantages of the application of KM to software engi­
neering are, in view of its activities, equally applicable, by inclu­
sion, to testing. Additionally, there are other points on which KM 
can specifically benefit software testing: 

• Selection and application of better suited techniques and 
methods. There are different testing methods and techniques 
(manual and automatic), as well as studies that are more or 
less helpful for selecting which are best suited for the case 
at hand (see, e.g., [38,39]). Testing techniques and methods 
are useful, but they have no practical selection and applica­
tion criteria. Some of these techniques (e.g., ad hoc testing 
[40], exploratory testing [41], and error-guessing testing 
[40]) even depend on the knowledge, experience and intui­
tion of testing engineers [42,43]. Experience then plays a 
key role in testing, and management of past experience will 
possibly help to effectively tailor the techniques and methods 
to the ongoing project. 

• Test cases selection and test design. Designing tests and 
selecting test cases involves adopting a strategy to trade off 
two opposite needs: amplify testing thoroughness, and 
reduce times and costs [42]. It is not easy to reach a trade­
off that successfully selects the set of test cases that maxi­
mizes efficiency and minimizes costs, and, as Beer and Ramler 
[43] found in their survey, tester experience is one of the 
fundaments for designing test cases and selecting regression 
tests. 



• Running and executing tests. Knowledge and experience of 
the domain and the product (system under test) is essential 
for increasing test effectiveness. Thus, for example, as Kaner 
et al. stated [44], "An experienced tester who knows the prod­
uct and has been through a release cycle or two is able to test 
with vastly improved effectiveness". 

• Testing by independent groups or outsourcing. Software test­
ing is an activity that lends itself to being performed by inde­
pendent groups within the organization or to being 
outsourced. Knowledge (and its management) has logically 
proved to be a key factor in both cases. In this sense, for 
example, Karhu et al. [45] studied the relationship of outsour­
ced software testing to KM, concluding that outsourced soft­
ware testing is more effective when independent testing 
agencies have enough domain knowledge. This is achieved 
by making knowledge explicit and, therefore, transferable. 

As an illustrative example of how KM can benefit software test­
ing in a particular company, consider that, back in 1978, NEC 
undertook an initiative for "learning from bugs". This initiative 
aimed to find the causes of software failures and prevent bugs: 
program bugs, software development mistakes and failures or 
stumbling blocks [46]. This initiative was implemented in 1981. 
It managed to increase software productivity and decrease the de­
fect level, although its biggest achievement was to improve the 
software development process through the performance of sys­
tematic process improvement activities. 

3. LLs and software testing 

3.1. LL systems 

Secchi et al. [47] gave the most comprehensive definition of a 
LL: "A lesson learned is a knowledge or understanding gained by 
experience. The experience may be positive, as in a successful test 
or mission, or negative, as in a mishap or failure. Successes are also 
considered sources of LLs. A lesson must be significant in that it has 
a real or assumed impact on operations; valid in that it is factually 
and technically correct; and applicable in that it identifies a spe­
cific design, process, or decision that reduces or eliminates the po­
tential for failures or mishaps, or reinforces a positive result". 
Unlike other knowledge artifacts (as they are termed in KMO), 
LLs are rooted in experience, describe both failures and successes 
and target organizational reuse [25]. 

LL systems are a KM enabler whose ultimate aim is to convert 
people's experience-derived individual knowledge into organiza­
tional knowledge through reuse. To manage these experiences, LL 
systems implement the processes supporting the LL life cycle. 
These processes manage the acquisition/collection, verification, 
storage, dissemination and reuse of LLs, which are hosted in a cor­
porate memory. 

LLs have mainly been used in mission-critical environments, 
defense-related areas and critical software, where there is a risk 
of massive human or material losses and it is essential to learn 
quickly from past experiences (successes or failures). This way, 
the first LL systems commissioned concerned accident prevention 
in military, aerospace, energy source management or environ­
mental activities. These are not, however, the only types of activ­
ities that can benefit from the advantages of a LL system. Such a 
knowledge-intensive activity as software testing can also profit 
from a LL system as a means of managing individual experience 
gained in testing projects to prevent the same mistakes from 
being made again and to assure successes are repeated. Martin 
et al. [48], for example, stress the importance of learning from 
experience in software testing: "drawing and learning from 

experience is somehow as important as following a rational ap­
proach to testing". 

3.2. Usefulness of LL systems in software testing 

Let us consider test cases selection, which is a recurrent prob­
lem in software testing [38] and one of the factors that most affects 
testing quality. Test case selection sets out to minimize the number 
of cases and maximize effectiveness. There are many techniques 
designed for this purpose, but there is little information about their 
applicability and suitability for a particular piece of software [39]. 
Additionally, testers use little information to make the decision on 
which techniques to use. Also what information they do use is 
based on intuitive factors and biased criteria. At the end of the 
day, there is a shortage of experimental information about the re­
sults of using these techniques in a particular context. A system 
managing LLs about testing technique selection and application 
could definitely help to solve this problem. 

On the other hand, the software testing process has to be made 
more effective, predictable and effortless. To do this, it is necessary 
to research new approaches like model-checking techniques or 
search-based approaches for test input generation [49]. These 
new approaches need empirical and experimental confirmation 
across different software types. To do this, they have to be applied 
to real cases to ascertain their effectiveness and applicability by 
observing the outcomes. A LL system containing experience from 
having applied these approaches would improve decision making. 

Notice also that, although tests of software built using new 
development models—web-based software, web services, SOA sys­
tems, etc.—share the same goals as the software developed with 
traditional methods, existing testing methods and techniques have 
to be tailored to the complexities and peculiarities of the new 
development models. Di Lucca and Fasolini [50] analyze the pecu­
liarities of the web applications testing and conclude that empiri­
cal studies need to be conducted to verify and validate the 
effectiveness and efficiency of existing testing approaches, as well 
as understand which approach is better suited for identifying each 
failure type. In the case of software built using new development 
approaches, we again find that experience in the use and applica­
tion of existing testing approaches to real testing projects is re­
quired and that a LL system would be useful as a container of 
such experience. 

Finally, let us highlight how important learning is in software 
testing project management. Project-driven testing, test outsourc­
ing and testing by independent teams mean that the tests are run 
by non-permanent groups (temporary organizations) and that any 
learning about the steps taken fritters away at the end of the tests. 
LLs could, however, provide critical input for several project pro­
cess areas, such as testing plan development, testing scope defini­
tion, estimation of the duration of testing activities, testing 
resource planning, and testing risk identification and analysis 
[51]. Software testing projects therefore could also improve if man­
agement LLs were considered. In fact, looking at Weber et al.'s 
goal-based classification [25], LLs can be divided into: technical 
lessons and planning (management) lessons. 

In brief, all the testing tasks in which experience is an important 
factor could benefit from the deployment of a software testing LL 
system. These tasks include: 

• Tasks related to the testing process management (including 
management LLs): 
- Resource, cost and time estimation. 
- Testing risk identification and evaluation and deployment 

of preventive and corrective actions. 
• Tasks related to the testing strategy (including technical LLs): 

- Identification of aspects to be more thoroughly tested. 



- Identification of the order of integration testing. 
- Selection of the best testing techniques. 
- Selection of the set of test cases that maximizes 

effectiveness. 
- Identification of test case and test suite reuse. 
- Identification of testing automation effectiveness criteria. 
- Selection of testing automation tools. 

• Tasks related to tactical testing issues (including technical 
LLs): 
- Generation of test data. 
- Prioritization of test cases. 
- Selection of most effective regression tests. 
- Establishment of stopping rules for testing (test 

coverage). 

3.3. Current software tools 

Even though, as mentioned above, KM and, particularly, LL sys­
tems are highly applicable to the software testing process, there 
have been few initiatives in this direction. As mentioned in [28], 
KM has seldom been researched in the software testing field, even 
though this field has a low knowledge reuse ratio, there are barri­
ers to knowledge delivery, there is a loss of knowledge and soft­
ware testing knowledge sharing environments are poor. Of the 
software tools whose functionalities address software testing 
experience (i.e., meta-knowledge or LLs) management, the follow­
ing three, which are the latest and most important, are worthy of 
note. 

3.3.1. Wikis for KM in software testing 
Lee and Kettinger [52] propose a wiki-based approach to KM in 

software testing. This collaborative technology supports the crea­
tion of a knowledge repository related to several activities. These 
activities can be generic (e-learning, project management, techni­
cal support, collaborations or posting of general information) or 
specific to software tests. As regards software testing, they propose 
gathering software test documentation for test planning, the re­
sults of unit testing, defect lists and fixes, user acceptance testing 
reports, and post-analysis reports. Apart from enabling the storage 
of documents, the proposal also makes provision for agendas, 
blogs, collaborative and virtual brainstorming spaces. The essence 
of the system is to create a space for capturing and sharing explicit 
testing group knowledge with a view to exchanging and converting 
this explicit knowledge into tacit knowledge held by each of the 
team members. 

This approach stands out as being extremely simple and rela­
tively inexpensive to develop. However, knowledge and experience 
is retrieved from the wiki using text search tools on documents, 
blogs and other wiki entries. This is a sizeable obstacle to knowl­
edge searching, dissemination and reuse, as (i) a lot of knowledge 
embedded in the texts can only be retrieved by examining wiki en­
tries one by one, and (ii) wiki entries do not contain descriptive 
information about the knowledge that they include (e.g., testing 
processes, testing techniques, software types, applicable project 
phase) or the context where the knowledge contained in the wiki 
is applicable. In this respect, the proposal could be improved by 
using a knowledge categorization and entry labeling system simi­
lar to the one described for the RISE (Reuse in Software Engineer­
ing) project [53], where the wiki is enhanced by search 
technologies using ontologies and user-defined tags to describe 
knowledge and experiences. 

3.3.2. Mobile software system testing 
Ong and Tang [54] propose a knowledge management system 

focusing on mobile telephone system testing. The aim is to raise 
the quality and reduce the effort and cost of testing by exploiting 

experience gained earlier in later testing cycles (regression 
within system testing) or applying this experience to telephone 
models with similar features. The proposal uses a document man­
agement system for testing documents (requirements, testing 
manuals, and testing procedures), that is, for the more explicit 
knowledge, and a knowledge-based database to collect knowledge 
regarding problem-solving tasks, classified and characterized by its 
attributes (phone model, test features, issues, solutions and contact 
person). 

The proposal covers interviews held to retrieve test engineers' 
expertise and knowledge and the establishment of a manager in 
charge of assisting, providing solutions and maintaining knowl­
edge about the issues concerning each test feature. For knowledge 
reuse and sharing, it proposes a knowledge-based database 
search and query mechanism and knowledge sharing sessions— 
by means of which the aim is to achieve knowledge transfer among 
experts and other members of the testing group (i.e., yellow pages: 
accessibility for people with the referred knowledge and 
experience). 

In this proposal, the knowledge is categorized and indexed in 
the knowledge-based database by means of key testing attributes. 
However, the knowledge stored is neither described nor formalized 
(context in which it is applicable, structure, types of knowledge 
artifacts it contains, etc.). Also, the system only focuses on domain 
knowledge, leaving aside technical and testing process manage­
ment knowledge. 

3.3.3. KM model-oriented software testing process 
Xuemei et al. [28] propose the construction of a platform to 

support knowledge management activities in software testing. 
The proposed platform is based on a communication site. This site 
logs the problems raised by staff, the problem-solving process 
and related documents. Knowledge is contained in a knowledge 
database, expressed in natural language, and represented by an 
ontology. The proposal manages a knowledge map, which is also 
used as a knowledge yellow pages, and knowledge classification 
trees to classify the documents considered important for solving 
software testing problems. Finally, the system has a knowledge 
retrieval engine enabling users to run queries and, using the 
above knowledge map, filter and access the stored documents 
that are applicable to their query. If no documents are found, 
the system puts users in touch with the people who have the 
knowledge. 

This proposal has important features, such as document index­
ation through knowledge classification trees, ontology-based 
knowledge representation, the use of search engines and yellow 
pages to contact the people who have specialized knowledge. In 
terms of knowledge management, however, this proposal falls 
down on documentary knowledge formalization and contextual-
ization, and fails to consider less explicit knowledge (knowledge 
that is part of the experience of the testing groups) for formaliza­
tion, sharing and reuse. 

3.4. Current software tool weaknesses 

The above proposals illustrate the fact that software testing 
knowledge management and, particularly, experience manage­
ment could be improved, to a greater or lesser extent, by consider­
ing the following points: 

• Structure and formalization: This is a common weakness 
of this kind of systems [55] that is an obstacle to the 
search, dissemination and reuse of knowledge and/or 
experience: the developed systems are systems targeting 
the management process rather than the object managed 
(i.e., the actual knowledge and/or experience). To be 



precise, the method used to gather/represent this asset 
(through knowledge-based and document-based tech­
niques) is not the best, as set out in Section 2. 

• Contextualization: This kind of systems does not gener­
ally define the environment and the context where the 
knowledge and/or experience have emerged. This makes 
it harder to identify the situations where this asset is 
applicable and, therefore, reusable. 

• Integral management: This aspect should be considered 
from two perspectives: managed object and management 
process. As regards the managed object, both explicit and 
implicit knowledge and/or experience must be consid­
ered, as should both the technical and management view. 
Not only should the management process improve knowl­
edge and/or experience storage and search, but it also has 
to provide procedures to deliver this asset to users and 
thereby encourage reuse. 

4. Proposed architectural model 

The first thing to do is to define the scope of the proposed archi­
tectural model. Taking into account that our goal is to manage the 
software testing experience, the scope of this model is confined to 
this asset (i.e., meta-knowledge or LLs in Fig. 1). The goal therefore 
is not to manage knowledge about existing methods or techniques 
(i.e., methodological or technical knowledge) but knowledge de­
rived from (gained by) experience that has the potential for reuse 
in future testing projects. 

Also, the architectural model proposed here is designed to try to 
avoid the weaknesses identified in Section 3.4 as follows: 

• Definition of a representation scheme for LLs that takes 
into account not only the actual lesson, but also the con­
text in which it emerges and is used. This scheme struc­
tures and formalizes all the aspects of the LLs: the 
context of the lesson, the experience inspiring the lesson, 
the actual lesson and its reuses. 

• Categorization of the descriptors of the LL context and 
unification of the values of the LL descriptors to improve 
indexation, access, searching and reuse. 

• Integration of LL management processes—acquisition/col­
lection, verification, storage, dissemination and reuse— 
with software testing activities. Thus, for example, 
besides the ordinary search facility, the proposed archi­
tectural model defines an active procedure for dissemi­
nating the lessons throughout all the testing activities. 
This assures that they can reach their potential users in 
the context where they are really applicable. This way, 
we aim to counter the failure of this type of systems to 
bridge the lesson distribution gap [56], that is to say, they 
do not bring LLs to the attention of the users when and 
where they are needed and applicable. 

To present the proposed architectural model, Section 4.1 out­
lines the representation scheme used for the LL repository design, 
Section 4.2 deals with the processes that support the LL life cycle, 
and, finally, Section 4.3 shows how to enable the active dissemina­
tion of the LLs by the subsystem defined for this purpose. This 
explanation is merited because this mechanism is more complex 
to ordinary search facilities. 

4.1. Software testing LL repository 

As noted in Sections 3.3 and 3.4, the current approaches for 
managing software testing experience do not provide a formal 
(software testing) LL representation scheme. We therefore exam­

ined the current generic (domain-independent) LL representation 
approaches in order to find a preliminary approximation for such 
a scheme. In actual fact, we used, in view of its relevance, the LL 
representation approach proposed by Weber et al. [25,57] as a 
starting point. Note, however, that while the generic approaches 
are able to represent the LLs of any domain, they are not well sui­
ted to the inherent features of a specific domain (e.g., software 
testing). In fact, Weber et al. explicitly identify only the minimum 
relevant information for a generic LL. This approach should then be 
particularized-restructured and adapted-for software testing do­
main LLs. 

This particularization process should be carried out bearing in 
mind that the resulting scheme has to be able to represent useful 
and applicable LLs by using a proposal closer to the final users. 
For the sake of usefulness, we have considered the experience 
and its later generalization and abstraction (see the level of 
abstraction of the lesson-specificity vs. generality-in, e.g., [57]). 
To achieve applicability, we have considered the context in which 
the LL emerges and where it was reused (see the discussion of the 
source and reuse of LLs in, e.g., [25]), as well as access to the people 
related to this experience (i.e., authors and reusers) by means, for 
example, of a yellow pages repository. 

As illustrated in Fig. 2, the scheme proposed here has been or­
ganized accordingly (restructured as mentioned above) into the 
following five main blocks: (i) Generic, containing general descrip­
tors identifying and relating the lesson to other lessons; (ii) Expe­
rience, containing the description of the events and situations by 
means of which the knowledge was gained (what happened, what 
alternatives there were, why things were done and the outcomes); 
(iii) Lesson Learned, containing the abstraction and generalization 
of this particular experience with the aim of later reuse; (iv) Con­
text, containing the identification of the environment in which 
experience was learned or is applicable; and, finally, (v) Reuse, con­
taining annotations regarding each time the lesson was reused. 
Additionally, the descriptors proposed by Weber et al. have to be 
adapted. In this respect, remember that Weber et al.'s representa­
tion approach considers only a minimum set of information. Taking 
this into account, we have (i) specialized descriptors in Weber 
et al.'s proposal as required (e.g., "Suggestion" was tailored as LL 
Core, and "Conditions" was tailored as Context) and (ii) added 

IDENTIFICATION 

Experience 

Facts 

Alternatives 

Decision 

Results 

Reasons 

USEFl JL 

Lesson Learned 1 

Improved Object 

Improved Quality 

LL Target Role 

LL Core 

NESS APPLICABILITY 

Fig. 2. Software testing LL scheme. 



descriptors to extend the representativeness of the minimum set 
(e.g., descriptors in the Reuse block). 

In the following we show the attributes defined for each of the 
above five blocks. These descriptors have been arranged by topics, 
subjects and activities that the experience deals with rather than 
the projects in which it was gained. This was done to improve ac­
cess to the content of the LLs through a proper categorization of the 
lesson descriptors. In this respect, Harrison [58] analyses organiza­
tional experience, where, after 20 years of post-project reviews, fi­
nal users have not used the stored reports mainly because of 
information access obstacles. 

Note that we present some possible values of interest for the 
proposed descriptors (see, e.g., [1,38,39]) from a didactic point of 
view in the following sections. These are intentionally not exhaus­
tive lists of values, since they are easily expandable to consider 
each particular situation/organization. 

4.1.1. Generic descriptors 
This block includes the general descriptors of the lesson used to 

identify and link the lesson to other related lessons: 

• Author: Name and e-mail address of the creator. 
• Creation Date: Date on which the LL was created. 
• Abstract: Summary of the lesson. 
• Related LLs: Lessons related to the lesson, stating, for each 

relation, a link to the related lesson and the type of estab­
lished relation. The lessons in the repository can be linked 
by the following relation types: (i) generalization (a lesson 
in a wider or more general domain or context than the origi­
nal setting); (ii) particularization (a lesson in a more 
restricted domain or context than the original setting); (iii) 
extension (a lesson in a complementary domain to the origi­

nal setting); (iv) contradiction (lessons with contradictory 
results); and (v) compilation (a lesson resulting from the 
combination of several lessons). 

4.1.2. Context 
The context of a lesson identifies the environment and situation 

where a lesson emerges. Experience provides a historical perspec­
tive from which it is possible to gain an understanding of new sit­
uations and events [59]. Thanks to experience, we are able to put 
the current situations into perspective and recognize relationships 
between current and past events. There are many possible relation 
types, but there will always be some degree of similarity or differ­
ence between the context and the environment where an experi­
ence is gained and the context and environment in which it can 
be applied. The quantification of the similarity or antagonism be­
tween situations is an indicator of the applicability of the LL. For 
this reason, the lesson necessarily has to contain the characteriza­
tion of the context where experience was gained. 

Any software development Project and, by inclusion, software 
testing, involves People carrying out engineering Process activities 
in order to produce software Products. For this reason, the defini­
tion of the context of a LL was driven by these 4 Ps. Table 1 shows 
the descriptors that formalize the context of a LL depending on the 
4 Ps, and their possible values. Both the descriptors and the possi­
ble (Testing) Process values are extracted from the chapter on the 
software testing knowledge area in the Guide to the Software Engi­
neering Body of Knowledge (SWEBOK) [1]. On the other hand, the 
descriptor Tester Independence within People (Testing Team) and 
its possible values complies with the IEEE Standard for Software 
and System Test Documentation [60]. Finally, the descriptors defined 
for Project and Product are inspired on the characterization scheme 

Table 1 
Software testing LL context. 

Descriptor Descriptor 
type 

Possible values 

Project 

Product 

Process 

People 

Development 
model 
Project size 
Project cost 
Business area 
Project goal 

Software 
architecture 
Programming 
language 
Hw-Sw 
integration 
Software type 
Software 
acquisition 

Testing activity 

Testing strategy 
Testing technique 

Testing level-
target 
Testing objective 
Testing 
automation level 

Experience level 

Tester 
independence 

Waterfall, spiral, incremental, model-driven, RAD, agile, extreme, scrum, test-driven 

<30, 30-300, 300-600, >600 function-points 
<25,000e, 25,000-250,0006, 250,000-1000,0006, >1000,0006 
Scientific, retail, military, transport, engineering, communications 
New development (adaptive, perfective, corrective, preventive), maintenance, platform migration 

J2EE, client-server, concurrent system, large platform, distributed 

VBasic, C, Java, Perl, Prolog 

Embedded, integrated, independent 

Firmware, expert system, real-time software, management software, operating system 
Tailored, commercial off-the-shelf software, outsourced package, customized standard product 

Risk management, cost management, schedule/planning management, resources management, configuration management test 
planning, test case generation, test environment development, test execution, test result evaluation, problem reporting, defect 
tracking 
Specification based, code based, fault based, usage based, application type based, tester intuition based 
Ad-hoc, exploratory, equivalence partitioning, boundary-value analysis, decision table, finite state machine, random, control flow 
based, data flow based, error guessing, mutation, web based, GUI testing, object-oriented testing, component-based testing 
Unit, integration, system 

Acceptance, installation, alpha, beta, functional, reliability, regression, performance, stress, recovery, configuration, usability 
Automated, manual, mixed 

High (over 2 years' software testing experience), medium (from 6 months' to 2 years' experience), low (less than 6 months' 
experience) 
Embedded, internal, integrated, modified, classical 



presented in [38,39], although the scope of this scheme—testing 
technique selection improvement—is narrow. 

4.1.3. Experience 
The process for obtaining the LLs from experience is far from 

simple, as it is troublesome to identify the real reasons why some­
thing works or has not worked well. Thus, according to Wheel­
wright and Clark [61], "the connection between cause and effect 
may be separated significantly in time and place. In some in­
stances, for example, the outcomes of interest are only evident at 
the conclusion of the project. Thus, while symptoms and potential 
causes may be observed along the development path, systematic 
investigation requires annotation of the outcomes, followed by 
an analysis that looks back to find the underlying causes". On the 
other hand, even if the experience is analyzed and a finding (LL) 
is output, the LL is not always straightforward to apply, as its appli­
cability has to be evaluated for a context that is not 100% identical. 
To be able to assess this applicability it is necessary to evaluate the 
context and to reproduce the thought process by which the finding 
(lesson) was reached, as a means of verifying the applicability to a 
new situation (see, e.g., the process-oriented approach to decision­
making in [62]). It is important then to understand what happened, 
what problem emerged, what alternatives were assessed, what 
decisions were taken and what were the results and then proceed 
accordingly (see, e.g., steps in the Decision-Making Procedure 
[63]). In summary, it is necessary to represent the experience tak­
ing into account the following descriptors: 

• Facts: Events that occurred or stated problems. 
• Alternatives: Options taken into account to solve the above 

problem. 
• Decision: Decision made as regards what alternative was cho­

sen and why. 
• Results: Outcomes. 
• Reasons: Causes that led to the Results. 

core is represented by means of (problem, solution) pairs. In our 
system, however, it will be represented by means of different char­
acterizations or patterns taken from this initial scheme and tai­
lored to the software testing field. Taking into account the key 
problems arising in the software testing field, we have established 
six pattern types: 

• Problem/risk prevention: actions to be taken to prevent a prob­
lem or lessen a testing process risk. 

• Problem solution/risk contingency: actions taken to solve a 
problem or minimize the impact of a materialized risk. 

• Technical impact: consequences of using a particular testing 
tool, technique or approach (i.e., knowledge extracted after 
using the element). 

• Application criteria: points to be taken into account about how 
to apply a testing tool, technique or method (i.e., knowledge 
to be taken into account before using the element). 

• Testing process improvement: organizational and procedural 
modifications or adaptations of the testing processes, activi­
ties or tasks with the aim of achieving better practice. 

• Operating guideline: criteria or recommendations on any of 
the activities within the testing process. It should set out 
how to organize, plan or materialize an activity. It can refer 
to a technical activity, such as the generation of test data or 
management data, or to test planning. 

Of course, the representation of the LL core is completely exten­
sible, providing for the inclusion of other patterns that can repre­
sent the LL core. 

4.1.5. Reuse 
The LL repository will contain one annotation for every time 

that a LL is reused. The aim is to be able to find out the contexts 
in which it was reused and the results of this reuse. The descriptors 
established for this purpose are as follows: 

4.1.4. Lesson Learned 
As mentioned above, a LL is obtained from the analysis of expe­

rience. This is the result of a process of generalization and abstrac­
tion and is represented here by three aspects: (i) the improved 
factor (that is, what testing process or task the application of this 
experience improves— Improved Object descriptor—and which 
quality of the testing process is improved—Improved Quality 
descriptor); (ii) the role that can exploit the LL (LL Target Role 
descriptor); and, finally, (iii) the LL core (LL Core descriptor). Table 
2 outlines the defined LL descriptors. 

The representation of the LL Core is based on the scheme pre­
sented in [64] for specifying experience packages by means of 
quality patterns. In these experience containers, the experience 

• Conditions: Environment and context in which the lesson was 
reused. 

• Results: Positive, negative, neutral result and explanation of 
the result. 

• Reuse author: Name and e-mail address. 
• Comments: Opinions or suggestions for the reuse of the lesson 

or its improvement. 

4.1.6. An example of a LL 
With the aim of clarifying the descriptors defined in the above 

sections, Table 3 shows an example of a LL represented following 
the proposed representation scheme. Please note that we use the 
problem/risk prevention pattern for the LL Core descriptor. This 

Table 2 
Software testing LL descriptors. 

Descriptor Possible values/patterns Pattern components 

Improved object 

Improved quality 

LL target role 

LL core 

Testing risk management, cost management, schedule/planning management, 
resources management, test reuse, test patterns generation, 
testing automation, testing execution, testing documentation 

Effectiveness, efficiency, optimization, adaptability, reliability, 

usability, comprehensibility, correctness, coherence, consistency, traceability 

Project manager, testing analyst, testing designer, tester, development engineer 

Problem/risk prevention 
Problem solution/risk contingency 
Technical impact 
Application criteria 
Testing process improvement 
Operating guidelines/procedure 

Problem/risk + preventive actions 
Problem/risk + corrective actions 
Testing technique + consequences 
Testing technique + application criterion 
Activity + improvement 
Activity + guidelines 



Table 3 
Software testing LL example. 

Generic 

Context 

Lesson 
learned 

Author 

Creation 
date 
Abstract 

Related LLs 

Project 

Product 

Process 

People 

Author, AuthonSe-
mail.com 
yyyy/mm/dd 

Performance testing of a system with a t 
the business logic layer and ending witl 
response times 
NA 

Development 
model 
Project size 

Project cost 

Business area 
Project goal 
Software 
architecture 
Programming 
language 
Hw-Sw 
integration 
Software type 

Software 
acquisition 
Testing activity 
Testing strategy 

Testing technique 
Testing level-
target 
Testing objective 
Testing 
automation level 
Experience level 
Tester 

Incremental 

Greater than 600 
function-points 
250,000-
1,000,0006 
Retail 
New development 
J2EE 

Java 

Independent 

Management 
software 
Tailored 

Test execution 
Specification 
based 
Web based 
System 

Performance 
Mixed 

Medium 
Integrated 

Experience Facts 

Alternatives 

Decision 

Results 
Reasons 

Improved 
object 
Improved 
quality 
LL target 
role 
LL core 

independence 
Performance testing of a three-tier system is divided into three testing tasks, one for each layer: data access, business logic and 
presentation 
There are two automated testing tools: the first monitors database management system access times and the second monitors application 
response times, as well as examining stress and concurrency 
A priori, any of the six order combinations is feasible, although intuitively there are two reasonable combinations: 

1st: data access, 2nd: business logic, 3rd: presentation 
1st: presentation, 2nd: business logic, 3rd: data access 

To prevent stoppages in view of testing team resource availability, the preferred option was to start with the presentation layer and finish 
with the data access layer 
The causes of poor response time were hard to identify during presentation layer testing 
As the code has not been debugged, it is not possible to single out the causes of the poor response times during testing 

Testing execution 

Efficiency 

Project manager, 
Testing analyst 
Problem/risk 
prevention 

Problem/risk Determine the optimal sequence for running performance tests ruling out the problems for 
identifying the source of the detected failures and the possible unnecessary repetition of tests 

Preventive actions Run tests in the following order: 1st: data access, 2nd: business logic and 3rd: presentation. 

lesson was collected during the prototype evaluation process de­
scribed later in Section 5, which has not yet been reused (i.e., the 
descriptors of the Reuse block are empty). 

4.2. Software testing LL management 

LLs are managed through subprocesses that are related to each 
other forming what is known as the LL life cycle. These subprocess­
es are acquisition (or collection), verification, storage, dissemina­
tion and reuse [25,27]. They are described in the following 
considering how they are integrated into the testing process. 

4.2.1. Acquisition/collection 
The acquisition or collection of software testing LLs is the first 

subprocess to be considered. Its goal is to capture and then represent 
experience about software testing processes with a view to reuse. 

Possible LLs can be identified in the testing process as follows: 

• Everyday testing tasks: The performance of everyday test­
ing activities is a source of experiences from which les­
sons can be learned. 

• Lessons learned sessions: Meetings resembling post-pro­
ject reviews can be held at particular, important times 
in the testing process, especially at the end of each testing 

http://mail.com


phase, where the goal is to identify, share and discuss 
experiences collectively in open sessions while they are 
still fresh in the participants' minds [58]. The milestones 
at which these sessions are held will depend on the test­
ing model, where the usual procedure will be for them to 
be held at the end of each testing cycle, at software instal­
lation time and at the end of the testing project. 

• Software failures in the operational system: A software fail­
ure in an operational system indicates that the failure was 
not detected during the testing process. An analysis of the 
reason for this can help to identify preventive and/or cor­
rective actions to assure this does not happen again. 

Irrespective of when LLs are identified, the collection process 
can be active or passive [17]. Active collection means that some 
organizational mechanism scans communication processes in or­
der to detect LLs. Passive collection means that workers believe 
that an experience merits being considered as a LL. In any case, 
and whichever the collection method used, the storage of LLs in 
the repository could be supervised or unsupervised [17]. That is 
to say, the LLs can be previously verified before storage, as in the 
subprocess outlined below, or stored directly by the LL authors. 

4.2.2. Verification 
The goal of this subprocess is basically to check that a LL is cor­

rect, consistent, relevant, and not redundant before it is stored in 
the repository (see, e.g., [25,47,59]). The result of this subpro­
cess—which will be carried out by an expert, authorized person, 
or a team (e.g., a team of expert testers and supervised by a KM 
Manager)—will be to accept, modify or reject the LL [17,59]. 

Obviously, this additional verification work should be taken 
into account as part of their job responsibilities, and it should 
not imply an extra/unrewarded workload. Otherwise, there is a 
danger of this additional work not being done properly. Note that 
the omission of this subprocess makes the LLs easier/cheaper to 
incorporate, as no dedicated resources are required. In return, 
though, there is no guarantee of LL correctness, consistency, rele­
vance or non-redundancy, with all that this implies. 

4.2.3. Storage 
This subprocess addresses issues related to the lesson represen­

tation and indexation, formatting, and repository framework 
[25,57]. In this sense, the descriptors of the proposed representa­
tion scheme used for the software testing LL repository defined 
in Section 4.1 precisely support the representation/storage of the 
lesson and relate it to others. This last point enables a (verified) 
LL to establish a network of relations to other LLs in the repository 
(that is to say, it enables "navigation" among LLs). 

4.2.4. Dissemination 
The ultimate aim of a LL repository is reuse, and repository 

accessibility and lesson dissemination is a key factor. This aspect 
is not, however, always effectively resolved. Harrison [58], for 
example, analyzed the initiatives for capturing software engineer­
ing LLs by holding post-project review meetings and concluded 
that post-project review reports were seldom accessed after the 
end of the project for two main reasons: (i) non-existence of formal 
mechanisms to assure the dissemination of the information be­
yond the review meeting participants, and (ii) inaccessibility of 
the information contained in the reports (i.e., unsatisfactory index­
ation of the contents). 

We propose two different strategies for disseminating software 
testing lessons. The first is active dissemination [17] or selective 
casting, where a software testing LL system disseminates the LLs 
according to a number of preset parameters (e.g., dissemination 
of potentially useful LLs at the start of each testing activity by 

means of the Context block Testing Activity descriptor). The second 
is passive dissemination [17] or on-demand searching, where the 
user is responsible for communicating with a software testing LL 
system and requesting the delivery of LLs. Both strategies will be 
described in more detail below: 

• Selective casting: A software testing LL system using this strat­
egy sends LLs (e.g., via e-mail) to all the individuals that meet 
the preset criteria and are considered potential users of those 
LLs. Depending on the criterion applied to determine the recip­
ients, selective casting will be either: 

- Personal casting: When a project kicks off or changes, 
potentially applicable LLs are broadcast to the human 
resources assigned to the project, considering: (i) the pro­
ject and product descriptors defined in the repository 
(project/product-based casting), and (ii) the profiles of 
potential users {LL Target Role descriptor). Due to its com­
plexity, Section 4.3 proposes a specific architecture for 
this kind of dissemination. 

- Narrow casting: Users select the types of LLs about which 
they would like to be informed if they are entered or 
modified in the LL repository. Users subscribe in compli­
ance with the descriptors that are part of the repository 
indexes. 

• On-demand searching: The user activates the communication 
process by sending a request to a search engine. The search 
engine will query the repository and return a report that the 
user will be able to filter according to the defined search 
indexes. Depending on search parameter specificity, the search 
engine can work to three separate on-demand searching 
methods: 

- Descriptor-based search: Users define the search values for 
the selected descriptors, generating a report containing 
the lessons that match the search term. 

- Dynamic search: This is based on the method described in 
[65]. It involves displaying the LL repository content by 
dynamically and incrementally selecting and filtering 
index descriptors. Search criteria are gradually defined 
dynamically, and the results are represented spatially so 
that the user can refine the search. 

- Similarity search: The query is specified by assigning 
search values to any of the repository index descriptors 
and an impact factor or relative search importance to each 
one. The search is run by a similarity function weighted 
by the impact factors and based on the conceptual prox­
imity of the query descriptor values and the existing les­
sons. The conceptual proximity value is based on 
Tversky's contrast model [66]. The resulting set is com­
pared with predefined similarity thresholds that the user 
can modify depending on the candidate lessons for 
evaluation. 

There are other dissemination strategies (e.g., broadcasting), 
but they are not usually recommended (e.g., they have very low 
hit rates and generate too many useless messages). 

4.2.5. Reuse 
Reuse is the ultimate goal of any LL system because it is the 

subprocess around which all such components revolve. The goal 
is to apply one or more LLs in the project at hand, and the benefit 
of lesson reuse will be directly related to the user-perceived util­
ity of the LL system [67]. In the proposed architectural model 
(see Section 4.1.5), the repository contains an annotation for 
every time the lesson is reused. This information is valuable for 
both ascertaining the applicability of the lesson and putting all 



the individuals with experience in a particular subject into 
touch. 

Specifically, LLs in software testing can be reused at three differ­
ent levels: 

• Testing project level: The LLs from product testing are 
applied in the same project, in regression testing or in dif­
ferent testing iterations. 

• Product level: The lessons are applied throughout the 
whole product life cycle (i.e., including maintenance). 

• Organizational level: Lessons are applied to projects or 
products with similar features. 

4.3. Architecture for the proposed active LL dissemination subsystem 

By monitoring software testing processes and the state of the LL 
repository, potentially relevant lessons can be proactively notified 
to the testing team. Thanks to this integration, the experiences 
stored in the LL repository are delivered to the testers in the con­
text where they could really be useful. Specifically, an active LL dis­
semination subsystem acts as an assistant that proactively 
suggests LLs for reuse. This is a very effective approach, as the user 
does not need to know about or even how to use the search system 
efficiently. Although this approach is essential for bridging the 
"lesson distribution gap" [56] (one of the main difficulties with 
deploying LL systems in any domain), very few existing systems 
use active dissemination [68]. 

Fig. 3 presents the architecture for the proposed active LL dis­
semination subsystem. In this proposal, the Testing Projects Map 
Builder dynamically forms an image (a project map) of each testing 
project from the information contained in the Testing Projects 
Management System. This project map contains the context 
descriptors defined in previous sections, the project planning and 
state, and human resources allocation and their roles. Note that 
this project map may contain incomplete information, as the infor­
mation concerning the testing project context grows and changes 
incrementally as it advances (Project Update Message). 

These project maps are used to search the LL repository by the 
context descriptors defined in Table 1, where lesson applicability 

to the project at hand is evaluated considering the previously de­
fined similarity search method (Similarity Search Server). The Les­
son Learned Router will route the lessons that are above the 
applicability threshold to the testing engineers concerned. 

On the other hand, the Repository Monitoring Module will de­
tect and report the modification of the repository (e.g., creation 
or modification of content or context) to the Applicability Evalua­
tion Module. This module will identify the projects to which the 
lesson is applicable through the Similarity Search Server, and the 
Lesson Learned Router will distribute it to the appropriate engi­
neers (potential users). 

5. Prototype 

5.1. Features 

Based on the proposed architectural model defined in Section 4, 
we have designed and built a web-based software testing LL sys­
tem prototype with the aim of evaluating the strengths and weak­
nesses of the core of the proposed model. 

This core addresses: (i) the LL representation scheme proposed 
in Section 4.1, and (ii) the basic subprocesses of the software test­
ing LL management (LL life cycle in Section 4.2). The reason behind 
this decision is that the core of any information system (and LL sys­
tems are a particular case) is the information (scheme) in itself and 
the essential processes managing this information (scheme). It 
makes no sense to add other proposals, subsystems, and/or func­
tionalities if users do not agree with the LL representation scheme 
and/or its essential management subprocesses, since they would 
work upon that groundwork. This prototype should therefore be 
evaluated before considering adding additional aspects (e.g., the 
LL dissemination subsystem presented in Section 4.3). 

Taking the above into account, the features of the prototype 
developed are as follows: 

• Storage according to the proposed LL representation scheme: 
The LLs are stored in a relational database whose concep­
tual scheme is directly derived from the proposal outlined 

Testing Projects Map 
Builder 

Lesson Learned 
Router 

Applicability Evaluation Module 

Similarity Search 
Server 

Repository Monitoring 
Module 

Fig. 3. Proposed active LL dissemination subsystem. 


