The Minimum Number of Points Taking Part in k-Sets in Sets of Unaligned Points

Rodrigo Hitos, Javier and López González, M. Dolores (2012). The Minimum Number of Points Taking Part in k-Sets in Sets of Unaligned Points. "Journal of Mathematics and System Science", v. 2 (n. 3); pp. 179-184. ISSN 2159-5291.

Description

Title: The Minimum Number of Points Taking Part in k-Sets in Sets of Unaligned Points
Author/s:
  • Rodrigo Hitos, Javier
  • López González, M. Dolores
Item Type: Article
Título de Revista/Publicación: Journal of Mathematics and System Science
Date: March 2012
ISSN: 2159-5291
Volume: 2
Subjects:
Faculty: E.T.S.I. Caminos, Canales y Puertos (UPM)
Department: Matemática e Informática Aplicadas a la Ingeniería Civil [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of INVE_MEM_2012_129729.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (131kB) | Preview

Abstract

En este trabajo se da un ejemplo de un conjunto de n puntos situados en posición general, en el que se alcanza el mínimo número de puntos que pueden formar parte de algún k-set para todo k con 1menor que=kmenor quen/2. Se generaliza también, a puntos en posición no general, el resultado de Erdõs et al., 1973, sobre el mínimo número de puntos que pueden formar parte de algún k-set. The study of k- sets is a very relevant topic in the research area of computational geometry. The study of the maximum and minimum number of k-sets in sets of points of the plane in general position, specifically, has been developed at great length in the literature. With respect to the maximum number of k-sets, lower bounds for this maximum have been provided by Erdõs et al., Edelsbrunner and Welzl, and later by Toth. Dey also stated an upper bound for this maximum number of k-sets. With respect to the minimum number of k-set, this has been stated by Erdos el al. and, independently, by Lovasz et al. In this paper the authors give an example of a set of n points in the plane in general position (no three collinear), in which the minimum number of points that can take part in, at least, a k-set is attained for every k with 1 ≤ k < n/2. The authors also extend Erdos’s result about the minimum number of points in general position which can take part in a k-set to a set of n points not necessarily in general position. That is why this work complements the classic works we have mentioned before.

More information

Item ID: 15605
DC Identifier: https://oa.upm.es/15605/
OAI Identifier: oai:oa.upm.es:15605
Official URL: http://www.davidpublishing.org/journals_info.asp?j...
Deposited by: Memoria Investigacion
Deposited on: 05 Nov 2013 11:55
Last Modified: 21 Apr 2016 15:51
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM