Programmed design of ship forms

Fernández Jambrina, Leonardo and Rodríguez Goñi, Antonio (2012). Programmed design of ship forms. "Computer aided design", v. 44 (n. 7); pp. 687-696. ISSN 0010-4485.


Title: Programmed design of ship forms
  • Fernández Jambrina, Leonardo
  • Rodríguez Goñi, Antonio
Item Type: Article
Título de Revista/Publicación: Computer aided design
Date: 2012
ISSN: 0010-4485
Volume: 44
Faculty: E.T.S.I. Navales (UPM)
Department: Enseñanzas Básicas de la Ingeniería Naval [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview


This paper describes a new category of CAD applications devoted to the definition and parameterization of hull forms, called programmed design. Programmed design relies on two prerequisites. The first one is a product model with a variety of types large enough to face the modeling of any type of ship. The second one is a design language dedicated to create the product model. The main purpose of the language is to publish the modeling algorithms of the application in the designer knowledge domain to let the designer create parametric model scripts. The programmed design is an evolution of the parametric design but it is not just parametric design. It is a tool to create parametric design tools. It provides a methodology to extract the design knowledge by abstracting a design experience in order to store and reuse it. Programmed design is related with the organizational and architectural aspects of the CAD applications but not with the development of modeling algorithms. It is built on top and relies on existing algorithms provided by a comprehensive product model. Programmed design can be useful to develop new applications, to support the evolution of existing applications or even to integrate different types of application in a single one. A three-level software architecture is proposed to make the implementation of the programmed design easier. These levels are the conceptual level based on the design language, the mathematical level based on the geometric formulation of the product model and the visual level based on the polyhedral representation of the model as required by the graphic card. Finally, some scenarios of the use of programmed design are discussed. For instance, the development of specialized parametric hull form generators for a ship type or a family of ships or the creation of palettes of hull form components to be used as parametric design patterns. Also two new processes of reverse engineering which can considerably improve the application have been detected: the creation of the mathematical level from the visual level and the creation of the conceptual level from the mathematical level. © 2012 Elsevier Ltd. All rights reserved. 1. Introduction

More information

Item ID: 15621
DC Identifier:
OAI Identifier:
DOI: 10.1016/j.cad.2012.03.003
Official URL:
Deposited by: Archivo Digital UPM
Deposited on: 05 Jun 2013 08:34
Last Modified: 21 Apr 2016 15:52
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM