Full text
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (415kB) | Preview |
Anderson, Travis J. and Hobart, Karl D. and Tadjer, Marko Jak and Feygelson, Tatyana I. and Imhoff, Eugene A. and Meyer, David J. and Katzer, D. Scott and Hite, Jennifer K. and Kub, Francis J. and Pate, Bradford B. and Binari, Steven. C. and Eddy Jr., Charles R. (2012). Improved GaN-based HEMT performance by nanocrystalline diamond capping. In: "70th Annual Device Research Conference", 18/06/2012-20/06/2012, University Park, Texas, EEUU. pp. 155-156.
Title: | Improved GaN-based HEMT performance by nanocrystalline diamond capping |
---|---|
Author/s: |
|
Item Type: | Presentation at Congress or Conference (Article) |
Event Title: | 70th Annual Device Research Conference |
Event Dates: | 18/06/2012-20/06/2012 |
Event Location: | University Park, Texas, EEUU |
Title of Book: | 70th Annual Device Research Conference |
Título de Revista/Publicación: | Device research conference digest, |
Date: | 2012 |
ISSN: | 0000000000000 |
Subjects: | |
Faculty: | E.T.S.I. Telecomunicación (UPM) |
Department: | Ingeniería Electrónica |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
Preview |
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (415kB) | Preview |
As a wide-bandgap semiconductor, gallium nitride (GaN) is an attractive material for next-generation power devices. To date, the capabilities of GaN-based high electron mobility transistors (HEMTs) have been limited by self-heating effects (drain current decreases due to phonon scattering-induced carrier velocity reductions at high drain fields). Despite awareness of this, attempts to mitigate thermal impairment have been limited due to the difficulties involved with placing high thermal conductivity materials close to heat sources in the device. Heat spreading schemes have involved growth of AIGaN/GaN on single crystal or CVD diamond, or capping of fullyprocessed HEMTs using nanocrystalline diamond (NCD). All approaches have suffered from reduced HEMT performance or limited substrate size. Recently, a "gate after diamond" approach has been successfully demonstrated to improve the thermal budget of the process by depositing NCD before the thermally sensitive Schottky gate and also to enable large-area diamond implementation.
Item ID: | 15755 |
---|---|
DC Identifier: | https://oa.upm.es/15755/ |
OAI Identifier: | oai:oa.upm.es:15755 |
Official URL: | http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumb... |
Deposited by: | Memoria Investigacion |
Deposited on: | 22 Jun 2013 08:30 |
Last Modified: | 21 Apr 2016 16:03 |