Listas KBM2L para la síntesis de conocimiento en sistemas de ayuda a la decisión

Fernández del Pozo de Salamanca, Juan Antonio (2006). Listas KBM2L para la síntesis de conocimiento en sistemas de ayuda a la decisión. Thesis (Doctoral), Facultad de Informática (UPM).


Title: Listas KBM2L para la síntesis de conocimiento en sistemas de ayuda a la decisión
  • Fernández del Pozo de Salamanca, Juan Antonio
Item Type: Thesis (Doctoral)
Read date: 24 November 2006
Freetext Keywords: Almacenamiento y Recuperación de Información Análisis Multivariante de Datos Análisis de Decisiones Análisis de Sensibilidad Aprendizaje Automático Clasificación Computación Evolutiva Descubrimiento en Bases de Datos Diagrama de Influencia Estructuras de Datos para Representación del Conocimiento Explicación en Sistemas de Ayuda a la Decisión Gestión de Conocimientos Ictericia Neonatal Inteligencia Artificial Linfoma Gástrico Matriz Multidimensional Metaheurísticas Minería de Datos Modelos Gráficos Probabilistas Modelos de Representación del Conocimiento Optimización Combinatoria Razonamiento Bajo Incertidumbre e Imprecisión Red Bayesiana Sistema de Ayuda a la Decisión Sistemas Basados en el Conocimiento Tabla de Decisiones Óptimas Tablas de Probabilidad Condicionada Análisis de Dependencias Valor de Esperado de la Información Perfecta
Faculty: Facultad de Informática (UPM)
Department: Inteligencia Artificial
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (3MB) | Preview


The implementation, evaluation and exploitation of Decision Support Systems by means of Bayesian Networks and Influence Diagrams, among other reasoning models, imply the use of tables with diversified information. Among them we focus on the conditional probability tables that represent the probabilistic relationships among variables and the tables of the optimal decisions resulting from the model evaluation. The tables, that can be very complex, include structured knowledge from the application domains over a set of variables of the probabilistic graphical model.
Under the name of KBM2L we introduce a technique to build the knowledge base of the decision support system. We try to exploit the KBM2L list as a useful tool for the knowledge representation of the system that includes the model graph, the utility and probability models and the evaluation output. The graphical representation is
qualitative and intuitive and then the users can easily access the knowledge if they are experts on the problem. On the other hand, the quantitative models of probability
and utility and the evaluation output do not show easily the knowledge because it is coded numerically, in the case of these models, and due to the huge size of the optimal
decision tables, in the case of the evaluation output. Both aspects do not allow us to recognize the main variables and relationships that describe the knowledge and explain the results.
While the tables can be regarded as static objects or entities, KBM2L lists are dynamic knowledge representations. A specific list configuration determines the ability of knowledge explanation, the eficiency to solve queries to the decision support system from many di®erents points of view and the memory complexity required to manage the knowledge base. The structure of the list allows us to reveal the granularity of knowledge from tables while the configurations show us the role of the model variables in the inferred evaluation. The granularity provides procedures to structure and understand better the knowledge that the system hosts in its tables. The role
of the variables in the di®erent contexts and in the whole model give us a mechanism to generate explanations of knowledge and of the system proposals and also the
sensitivity analysis of the model itself.
After the introduction we show the foundations of the KBM2L list for knowledge representation and describe the problems of the optimal representation search and several proposals of solution. We face a combinatorial optimization problem that is dealt with algorithms and methods adapted to our objective in the framework of metaheuristics. Next, we show the application of these techniques to optimal decision
tables and conditional probability tables of the influence diagram. Finally, we propose to perform a model sensitivity analysis by means of the natural extension of the usual
KBM2L list with the meaningful parameters.

More information

Item ID: 1701
DC Identifier:
OAI Identifier:
DOI: 10.20868/UPM.thesis.1701
Official URL:
Deposited by: Juan Antonio Fernández del Pozo de Salamanca
Deposited on: 25 Jun 2009
Last Modified: 10 Oct 2022 09:19
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM