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Fig.13. Ritz method calculation for the mixed model with sliding-slidingjclamped-clamped conditions, for steel cylinder of 5=20, yields results for first
antisymmetric and symmetric modes, shown with upper and lower solid lines, respectively. Experimental results (rhombuses) and values calculated by
BE model for sI-sI and c-c end conditions are also shown in dotted line and dashed-dotted line, respectively.

compressions, respectively. The displacement w is of the form given by Eqs. (23) or (26) because it is assumed that the
points of the cylinder located on the end surfaces are in permanent contact with the platens of the press.

In order to introduce an analytical expression which is easy to handle, in the model proposed for the boundary
conditions, the displacements depend on the compression N in such a way that there is a smooth transition from si-si to
c-c conditions. A proposal is:

[
1 Z2 ]u = '4 + [2 tanh(bN) U(r,z)cos8sin(wt)+Uo(r,z),

v = [~+ ~~ tanh(bN)] V(r,z)sin8sin(wt)+ Vo(r,z),

(27)

(28)

where the non-dimensional parameter b is a constant characteristic of the experiment carried out.
Boundary conditions given by Eqs. (27) and (28) describe the constraints on the radial and tangential displacements

induced by compression. The degree of constraint on the radial and tangential displacements on the end surfaces depends
on the non-dimensional force N. For N=O, the expression enclosed in the square brackets in (27) and (28) equals 1/4, the
in-plane constraint does not exist, and the ends are free to move in the radial and tangential directions, therefore the
resulting displacements represent the sliding-sliding conditions. On the other hand, for large compression loads, the radial
and tangential displacements on the end surfaces are completely constrained; indeed, if N tends to - ro, the displacements
given by (27) and (28) become those of a clamped-clamped cylinder. For intermediate compressive loads, partial slip can
occur between the cylinder and the loading platens.

Friction, as a source of an irreversible process, is not considered here. The dependence of displacements on force N,
expressed by the square brackets in (27) and (28), can be interpreted as due to the fact that a portion of the bases is
clamped due to friction and the rest is free, and the fraction clamped increases with N.

The lowest flexural frequencies for the steel cylinder as a function of the compressive force are calculated by the Ritz
method for the symmetric modes and then for the antisymmetric ones. The procedure described in Section 4 is followed.
The results obtained are shown in Fig. 13 for b=3000. The upper and lower solid lines correspond to the antisymmetric
and symmetric modes, respectively. It should be noted that the curves for the symmetric and antisymmetric modes do not
cross each other. This figure has little detail because the interval between two values of N is of the order of ~N=0.0001,
therefore, the curves are constituted by noticeably straight line segments. The null frequency, corresponding to the motion
of the cylinder as a rigid body, is not included. These null frequencies are possible in the sliding-sliding mode!. The values
of the frequency for the si-si and c-c models (both calculated by the BE theory) are also shown in Fig. 13 along with the
experimental results of Table 3.



Fig. 14. Curves of variation of lowest flexural natural frequency with non-dimensional compressive force applied to stainless steel cylinder of 5=20,
calculated by Ritz method. Solid double curve qualitatively resembles experimental results denoted by rhombuses.

For the steel cylinder with s=20, the curves obtained for the variation of the lowest flexural frequency in terms of the
compression applied, with ~N=O.OOOOl and b=3000, are shown in Fig. 14. The resulting curve resembles qualitatively
that showing the experimental results denoted by rhombuses. In order to draw such final curves the following
considerations are taken into account:

1) Frequencies close to zero are disregarded in the experiment since they do not indicate vibration and, in addition, can be
caused by background noise; therefore they are not listed in Table 3. For that reason the values of almost null frequency
in Fig. 13 are disregarded in the final result shown in Fig. 14.

2) For small values of compression, the lowest frequencies should be chosen from the antisymmetric mode, whose
smallest value is approximately 500 Hz.

3) For high values of compression, the non-nulllowest frequencies correspond to the symmetric mode, and this mode is
selected.

4) The lowest frequency measured in the experiment was 782 Hz and its variation was followed with the gradual increase
in compression.

5) There is a region of intermediate values of N in which the curves corresponding to the symmetric and antisymmetric
modes almost touch each other; in this region the experimental results show that there are two close frequencies,
almost multiple frequencies, as would be expected according to the mode!.

The curve obtained with these considerations (see Fig. 14) is composed of the two solid curve portions. lt bears a
qualitatively resemblace to the experimental curve. However, it seems evident that this result could be improved with a
more refined curve fitting.

13. Conclusions

In this work, the Ritz method is used to investigate the effect of stress on the natural flexural frequencies of a cylinder of
any aspect ratio. Three-dimensional solutions are obtained for flexural natural frequencies of cylinders under axialloads.
Suitable power series are used to represent the displacements and all the exponents are optimally chosen by following an
iterative process. This yields a faster convergence to accurate results for natural frequencies.

A numerical model based on the Ritz method is developed for an axially loaded cylinder. Elastic linear behaviour of the
material is assumed but nonlinear strain components are included in the analysis. Nonlinear terms in the strain
components associated with relative elongations of elements, which before deformation are parallel to the direction of the
axial force, account for the effect of the force on the flexural vibration. On the other hand, a linear strain tensor is
considered in evaluating the strain energy associated with the small-amplitude flexural vibration superimposed on its
initial tension.



Natural flexural frequencies of symmetric modes of free-free prestressed cylinders are numerically calculated by
applying the Ritz appraach. For a free-free cylinder of stainless steel, with aspect ratio 10 and a Poisson's ratio of 0.3, under
compressive forces, and relative strain of 0.2%, a decrease in the lowest frequency of appraximately 18% is observed, while
for an aspect ratio of 1, the decrease is about 0.4%. The appraach praposed can be used to evaluate the prestressing force
acting on a cylinder fram the measurement of the lowest natural frequency.

Laboratory experiments are carried out using a hydraulic press to compress the cylindrical samples. Free flexural
vibration is excited by striking the sample with a pendulum and the induced vibration is detected with a laser
interferameter. A disagreement is found between the experimental values of the lowest flexural frequency and those
calculated by the Ritz method for clamped-clamped and sliding-sliding cylinders. As the compressive force increased, the
boundary conditions seemed to change fram sliding-sliding conditions to clamped-clamped ends. For high compressive
forces, the sample behaves as if it were a clamped-clamped cylinder. A model with changing boundary conditions which is
based on the Ritz formulation is praposed. The appraach allows for the possibility of considering intermediate cases
between full and zera transverse constraint at the ends. The flexural frequencies calculated in terms of the compressive
force are in partial agreement with the measurements in the laboratory tests. The discrepancies observed may have been
due to factors such as: the nonrealistic modeling of the boundary conditions in the actual compression test, the non­
uniform stress distribution within the cylinder under compression due to the friction existing between the end surfaces
and the platens of the loading machine, the loss of mechanical energy due to friction, and the uncertainty in the
measurement of the applied force.
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