Full text
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (732kB) | Preview |
Hernández Peñalver, Gregorio and Abellanas Oar, Manuel and Bajuelos Domínguez, Antonio Leslie and Canales Cano, Santiago and Claverol, Merce and Matos, Ines (2012). Connecting red cells in a bichromatic Voronoi diagram. In: "XIV Spanish Meeting on Computacional Geometry", 27/06/2011 - 30/06/2011, Alcalá de Henares, Madrid. ISBN 978-3-642-34190-8. pp. 173-176.
Title: | Connecting red cells in a bichromatic Voronoi diagram |
---|---|
Author/s: |
|
Item Type: | Presentation at Congress or Conference (Article) |
Event Title: | XIV Spanish Meeting on Computacional Geometry |
Event Dates: | 27/06/2011 - 30/06/2011 |
Event Location: | Alcalá de Henares, Madrid |
Title of Book: | Computational Geometry |
Date: | 2012 |
ISBN: | 978-3-642-34190-8 |
Volume: | 7579 |
Subjects: | |
Freetext Keywords: | Weighted Voronoi diagrams, Bicolour Points, Diagrama ponderado Voronoi, Puntos bicolor. |
Faculty: | Facultad de Informática (UPM) |
Department: | Matemática Aplicada |
Creative Commons Licenses: | Recognition - No derivative works - Non commercial |
|
PDF
- Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (732kB) | Preview |
Let S be a set of n + m sites, of which n are red and have weight wR, and m are blue and weigh wB. The objective of this paper is to calculate the minimum value of wR such that the union of the red Voronoi cells in the weighted Voronoi diagram of S is a connected set. The problem is solved for the multiplicatively-weighted Voronoi diagram in O((n+m)^2 log(nm)) time and for the additively-weighted Voronoi diagram in O(nmlog(nm)) time.
Item ID: | 19279 |
---|---|
DC Identifier: | https://oa.upm.es/19279/ |
OAI Identifier: | oai:oa.upm.es:19279 |
Official URL: | http://link.springer.com/chapter/10.1007%2F978-3-642-34191-5_20 |
Deposited by: | Memoria Investigacion |
Deposited on: | 24 Sep 2013 17:13 |
Last Modified: | 21 Apr 2016 17:32 |