Computational Methods for Identification of Vibrating Structures

Cara Cañas, Francisco Javier and Carpio Huertas, Jaime and Juan Ruiz, Jesús and Alarcón Álvarez, Enrique (2009). Computational Methods for Identification of Vibrating Structures. In: "12th. International Conference on Civil, Structural and Environmental Engineering Computing", 01/09/2009-4/09/2009, Funchal, Madeira (Portugal). ISBN 978-1-905088-32-4.

Description

Title: Computational Methods for Identification of Vibrating Structures
Author/s:
  • Cara Cañas, Francisco Javier
  • Carpio Huertas, Jaime
  • Juan Ruiz, Jesús
  • Alarcón Álvarez, Enrique
Item Type: Presentation at Congress or Conference (Article)
Event Title: 12th. International Conference on Civil, Structural and Environmental Engineering Computing
Event Dates: 01/09/2009-4/09/2009
Event Location: Funchal, Madeira (Portugal)
Title of Book: Proceedings of the Twelfth International Conference on Civil, Structural and Environmental Engineering Computing
Date: 2009
ISBN: 978-1-905088-32-4
Subjects:
Freetext Keywords: System identification in structures ; State space models ; Kalman filter ; Stochastic subspace methods ; Bootstrap
Faculty: E.T.S.I. Industriales (UPM)
Department: Mecánica Estructural y Construcciones Industriales [hasta 2014]
Creative Commons Licenses: Recognition - No derivative works - Non commercial

Full text

[thumbnail of COMPUTATIONAL_METHODS_FOR_IDENTIFICATION_OF_VIBRATING_STRUCTURES.pdf]
Preview
PDF - Requires a PDF viewer, such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB) | Preview

Abstract

System identification deals with the problem of building mathematical models of dynamical systems based on observed data from the system" [1]. In the context of civil engineering, the system refers to a large scale structure such as a building, bridge, or an offshore structure, and identification mostly involves the determination of modal parameters (the natural frequencies, damping ratios, and mode shapes).

This paper presents some modal identification results obtained using a state-of-the-art time domain system identification method (data-driven stochastic subspace algorithms [2]) applied to the output-only data measured in a steel arch bridge.

First, a three dimensional finite element model was developed for the numerical analysis of the structure using ANSYS. Modal analysis was carried out and modal parameters were extracted in the frequency range of interest, 0-10 Hz. The results obtained from the finite element modal analysis were used to determine the location of the sensors.

After that, ambient vibration tests were conducted during April 23-24, 2009. The response of the structure was measured using eight accelerometers. Two stations of three sensors were formed (triaxial stations). These sensors were held stationary for reference during the test. The two remaining sensors were placed at the different measurement points along the bridge deck, in which only vertical and transversal measurements were conducted (biaxial stations).

Point estimate and interval estimate have been carried out in the state space model using these ambient vibration measurements. In the case of parametric models (like state space), the dynamic behaviour of a system is described using mathematical models. Then, mathematical relationships can be established between modal parameters and estimated point parameters (thus, it is common to use experimental modal analysis as a synonym for system identification). Stable modal parameters are found using a stabilization diagram.

Furthermore, this paper proposes a method for assessing the precision of estimates of the parameters of state-space models (confidence interval). This approach employs the nonparametric bootstrap procedure [3] and is applied to subspace parameter estimation algorithm. Using bootstrap results, a plot similar to a stabilization diagram is developed. These graphics differentiate system modes from spurious noise modes for a given order system.

Additionally, using the modal assurance criterion, the experimental modes obtained have been compared with those evaluated from a finite element analysis. A quite good agreement between numerical and experimental results is observed.

More information

Item ID: 19999
DC Identifier: https://oa.upm.es/19999/
OAI Identifier: oai:oa.upm.es:19999
Official URL: http://www.ctresources.info/ccp/paper.html?id=5465
Deposited by: Biblioteca ETSI Industriales
Deposited on: 17 Sep 2013 08:52
Last Modified: 21 Apr 2016 22:09
  • Logo InvestigaM (UPM)
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo Sherpa/Romeo
    Check whether the anglo-saxon journal in which you have published an article allows you to also publish it under open access.
  • Logo Dulcinea
    Check whether the spanish journal in which you have published an article allows you to also publish it under open access.
  • Logo de Recolecta
  • Logo del Observatorio I+D+i UPM
  • Logo de OpenCourseWare UPM