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A time division multiplexing (TDM) array for passive multiplexing of identical fibre 
optic intensity sensors has been demonstrated. Microbending loss sensors are 
introduced in fibre optic rings and pressure information is directly detected, demul
tiplexed and demodulated from the relative amplitude of the first two pulses produced 
on each ring. Severa! dynamic ranges from 6 dB to 14 dB are shown. A comparison 
between both fibre optic ring and Mach-Zehnder structure impulse responses is 
carried out and the consequences derived from second- and higher-order recirculat
ing ring pulses are also evaluated. This technique can be applied to those TDM 
intensity sensing schemes which require low cost, high number of identical sensors, 
and suffer high element loss and undesirable intensity fiuctuations at low frequencies. 

1. Introduction 

In sorne applications, physical parameters can be di
rectly registered in the optical intensity of the light 
along an optical fibre. Intensity sensors offer enough 
dynamic range to detect and measure sensing infor
mation. They can be implemented with both single
mode or multimode optical fibres. Light emitting 
diodes (LEOs) or laser diodes (LOs) are suitable as 
optical sources. Intensity sensors represent a lower cost 
solution when compared to optical interferometric sen
sors. However, intensity fluctuations due to optical 
sources or produced in the transmitting optical fibres, 
and the difficulties in multiplexing them on an arra y, 
have contributed to reducing their practica! applicabi
lity. In fact, information registered in the amplitude of 
a single pulse is exposed to undesirable light pertur
bations. If these intensity sensors are included in time 
delay structures, such as recirculating ring or non
recirculating Mach-Zehnder configurations it is poss
ible then to integrate severa! intensity sensors on a 
single array and recover the sensing information with
out any undesirable low frequency amplitude fluctua
tion. 

In this work, a novel time division multiplexing 
method for integrating a high number of intensity based 
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sensors is presented. Severa! topologies are also dis
cussed. Pulsed light is used and microbending loss 
sensors are applied along the length of optical fibre 
rings. In this way, pressure information is dirctly regis
tered as externa! loss in the amplitude of the first and 
the successive recirculating pulses generated from each 
of the rings. If an adequate ring coupling constant is 
chosen, this sensing information can be detected and 
measured from the relative amplitude of the reference 
and the first recirculating pulses, which provides an 
improved dynamic range. The optimum coupling con
stant value depends on the coupler excess loss and the 
recirculating length loss of the fibre. We demonstrate 
that sensing dynamic range is inversely proportional to 
this value and the intrinsic excess Ioss of the rings. 
Mínimum threshold detection leve! of the photodetec
tor is also taken into account in this analysis. 
Mach-Zehnder and ring structures are compared and 
evaluated in a Iadder array. Experimental results are 
shown in this work to verify the behaviour of the 
theoretical analysis. 

2. Impulse response of optical fibre intensity sensing 
structures 

The intensity sensing structure considered initially is an 
optical fibre crosscoupled ring (CCR) where a micro
bending loss sensor is applied in the recirculating loop, 
as shown in figure l(a). Other intensity sensors [1, 2] 
could be also applied in that structure, but we willlimit 
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Figure 1. Optical fibre intensity sensor structures: (a) ring structure; and (b) Mach-Zehnder structure. 

our analysis to those sensors that detect external loss 
measurements directly proportional to the applied 
externa} pressure. In such structures, f3 is the intrinsic 
excess loss per complete recirculation of the ring. This 
parameter assembles the coupler insertion loss (y) and 
the intrinsic loop loss due to connectors, splices and 
propagation in the fibre (/). The variable external 
microbending loss applied to the loop, which is the 
physical parameter to be measured, will be called X. lf 
k is the power coupling constant of the directional 
coupler, and r is the time del ay per recirculation in the 
ring, the time domain intensity response can be 
expressed as follows: 

hcCR(t) = (1- y)k 

x{o(t)+ry ~ [1JC~kYJo(t-(1+i)r)}. 
(1) 

where 17 is the ratio between the first recirculating pulse 
amplitude and the non-recirculating pulse amplitude, 
being defined by 

(1- k) 2 (1- k) 2 

ry=¡¡0X=(1-y)l k X=/3 k X. (2) 

As externallosses are lower or equal to unity (X~ 1) 
when the value of the coupling constant is much smaller 
than unity (k <I; 1), and no gain is applied to the fibre 
loop, then the coefficients in the summation in (1) are 
also much smaller than unity due to 

17 (_!:__) 2 

= j3kX <i; l. 
1-k 

(3) 

Consequently, sin ce these coefficients are raised to 
the power of i, all terms of the summation tend expo
nentially to zero except for i =O. On the other hand, 
the coefficient of the second term, for i =O, in creases 
drastically as k approaches zero, assuming no external 
losses are applied (X= 1). This is equivalent to saying 
that when the coupling constant value tends to zero, the 
optical power of the first recirculating pulse normalized 
to that of the non-recirculating pulse ( also called the 
reference pulse) increases exponentially. Therefore, we 
can compare the optical powers of the reference and 
the first recirculating pulses to those from the rest of the 
recirculating pulses produced in the ring. Using the 
coefficients of ( 1) and supposing that X= 1, this magni
tude can be represented as a power ratio (PR) given by 

(4) 

This ratio gives the relative power in the reference 
and the first reciruclating pulse compared to the total 
optical power from the remaining pulses. In figure 2(a), 
the parameter PR is plotted for small values of k 
considering various values of f3 and assuming that 
X=l. 1t is shown for {3=0(-), -1(--), -3(-·) and 
- 6( · · ·) dB that intrinsic losses enlarge the relative 
energy of two such first pulses compared to the rest. 
This effect is much more evident when the coupling 
constant approaches zero. 

From the previous results it is observed that, in a 
CCR structure, if the coupling constant value, k is 
much lower than 1 (k <I; 1), most of the transmitted 
power is concentrated in the first recirculating pulse, 
being negligíble in the second and successive recirculat
ing pulses. When k approaches zero, the value of the 



parameter 17 11 can be much larger than unity, even if 
internalloss, (3, has practica! values. As can be deduced 
from (2), the relative difference between the first two 
pulses generated in the ring increases. 

Since intensity fluctuations produced out of the ring 
affect of all these pulses in the same proportion the 
ratio between the first recirculating pulse and the refer
ence pulse (which can be considered to be the demodu
lated signa! value of 17) will be free of such pertur
bations, being only dependent on the externa! losses 
applied on the ring. This means that X would be the 
exact magnitude being detected when externa! pressure 
is applied to the loop. The dynamic range of the 
detected signa! could be defined as the maximum excur
sion of the normalized signa!, 17. lt is reasonable to take 
as the amplitude of the reference pulse A 1 the mínimum 
amplitude detectable from the photodetector, this 
value is discussed below. Thus, if the value of X is egua! 
to 1/r¡0 , the amplitude of the first recirculating pulse A 2 

becomes identical with A 1• In that case, it is defined as 
the minimum detectable value. On the contrary, when 
no pressure is applied, no externalloss is detected and, 
therefore, X is egua! to unity. Once both limits have 
been defined, the dynamic range DR of the normalized 
amplitude A 2/A 1 can be written as 

'

Ao Ao( 1) 1 DR= A~(X=l)- A~ X=r¡
11 

=1¡0-l. (5) 

In figure 2(b), the normalized parameter r¡ =A21A 1 is 
plotted versus X. The corresponding values of DR for 
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severa! values of (3 are also shown. From these curves, 
it is easy to check that the dynamic range is a linear 
function of the externa! applied loss X with a slope 
egua! to r¡ 11 • Therefore, the maximum value of DR is 
achieved for a maximum value of 17 11 • 

Ideally, 17 11 could converge to infinity, but, in a real 
system, the value of the reference pulse should be 
adjusted to the minimum detectable amplitude of the 
detector plus a saving margin determined by the maxi
mum absolute fluctuations allowed in the system. We 
can normalize these intensities to the input pulse ampli
tude l¡ and cal! them U and M, respectively. Hence, the 
lower bound of k, kmin• is given by 

U+M 
kmin = (l-y) · (6) 

From this result, the value of r¡ 11 , particularized to kmin is 
the maximum value obtainable. The value of the 
detected X is bounded between 

U+M 
max. externalloss detectable: ( U+ M) 

2 
~ 

(1-y) 2l 1---
1-y 

~X~ 1: no externa! loss applied, (7) 

where the lower bound relates to the maximum detec
table externa! loss and the upper bound to no applied 
externalloss. 

The intensity sensor can also be introduced into one 
of the two branches of an optical fibre Mach-Zehnder 
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Figure 2. (a) Optical power ratio between the reference plus the first recirculating pulse, and the second and higher order pulses, 
P'R, versus the coupling constant of the ring, k. Curves correspond to the values of fJ= O[-], -1 [--], -3 [- ·] and -6 [· · ·] dR; (b) 
the normalized parameter r¡ versus the externalloss applied (X). The dynamic range, DR, of this sensor structure is also shown for 
the following values of r¡0 = 5 [-], 10 [--], 20 [- ·] and 25 [· · ·]. 
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Figure 3. (a) Parameter q' versus k' for a Mach-Zehnder structure (curve called 1), and parameter q versus kfor a ríng structure 
(curves called 2) with several total recirculating Iosses ({J=O [· · ·], -1 [-·], -3 [--] and -4·77 [-] dB). Plotted points [ü] and [*] 
are experimental results when {J=- 3 and - 4·77 dB, respectively; (b) q0 / 11~ versus the coupling constant of the ring (k), when the 
reference pulses of the ring and the Mach-Zehnder structure are identical. Values of {J considered are O[-], -1 [-·] and 
-3 [--) dB. 

(MZI) structure, using the other one as a reference. In 
this configuration, two coupliers are required instead of 
the single coupler needed in a ring structure. As was 
shown above, if the coupling constant of the ring is 
close to zero, sensing information can be extracted 
from the first two pulses. In that case, both structures 
can be compared [3). In order to accomplish this fact, 
both directional couplers have been considered with 
identical coupling constant k', having an excess loss 
value of y. The differential time delay between the two 
branches is r. The intrinsic loss per branch is considered 
identical and equal to [1 when the propagation fibre loss 
along r is neglected. In that case, for the scheme shown 
in figure 1(b), the intensity impulse response for the 
Mach-Zehnder structure is given by 

Now, the new parameter r¡' is the ratio between the 
amplitudes of the second and the first pulses. This 
corresponds to the demodulated signa! and is expressed 
as 

(
1- k')2 

r¡' =r¡[¡X= --¡;- X. (9) 

The values of r¡0 and r¡;, depending on k and k', 
respectively, have been plotted in figure 3(a) for differ
ent values of (1- y) and l. For the curves in which total 
intrinsíc excess Ioss is - 3 dB (o) and - 4· 77 dB ( *), 

plotted points, (o) and ( *), correspond to experimental 
measurements on the ring configuration. lt is shown 
that the same value for parameters r¡0 and r¡(¡ can be 
obtained for different values of the corresponding cou
pling constants, and always when k< k'. As assumed 
above, since the loss produced by intrinsic propagation 
in the fibre differential length (with delay r) has been 
neglected, r¡(¡ depends exclusively on k'. Being now the 
dynamic range equal to r¡(¡- 1, this value is maximized 
when r¡[¡ increases. In order to compare such structures, 
both Mach-Zehnder and ring reference pulse ampli
tudes can now be designed to be identical. This occurs 
when k and k' are related by 

(10) 

In this case, the efficiency of both structures is easily 
determined by calculating the ratio r¡ 0 /r¡(¡. Taking (10) 
into account, this ratio has been plotted in figure 3(b) 
versus the coupling constant of the ring for severa! 
values of f3. As shown, the DR of the ring is always 
greater than the DR of the Mach-Zehnder structure. It 
is also observed that r¡0 is larger than r¡[, the difference 
being more accentuated when both loop loss and k 
increase. 

Therefore, when an intensity sensor is introduced in 
a multibranch fibre structure, information can be regis
tered as an externa! loss and detected without undesir
able amplitude fluctuations due to optical power fluc
tuations in the system. For a given intrinsic loss in the 



structures considered, the dynamic range is dependent 
upon their coupling constants. The first two transmitted 
pulses of the ring stucture have been compared with 
those produced in the Mach-Zehnder structure, when 
values of k are close to zero. For these values, the 
largest part of the power is concentrated in the first two 
pulses, anda larger dynamic range is achieved with the 
ring configuration. Furthermore, a reallimitation of the 
minimum threshold detection level of the photodetec
tor is also considered in the evaluation of the minimum 
coupling constant of the ring. 

3. Time division multiplexed sensing array 

Time division multiplexing of the sensing structures, 
which has been characterized in the previous section, is 
achieved by using a pulsed LED or LD source. Since 
transmitting structures are chosen, periodic pulses 
emitted from the source are launched to and derived 
from the sensing array by input and output buses, 
respectively. The topology analysed is a transmitting 
ladder array in whch N sensing rings are located on the 
ladder steps along the two buses. Directional couplers 
used to link the same step between buses are identical 
and their coupling constants are tailored along the steps 
of the buses to ensure equal optical power returning 
from each sensor at the output bus. 

As shown in figure 4, S1 , S2 , ..• , SN are the micro
bending intensity based sensors, k¡, k2 , ••• , kN are the 
tailored coupling constants of the arra y, y is the excess 
loss per coupler, and T1 = T2 = · · · = T N= T are the 
fixed identical delays between sensing steps. This value 
is an integer number of r, and is crucial for determining 
the crosstalk of the array. Propagation losses along the 
fibre are neglected in the following analysis. Coupling 
constants of the bus couplers are tailored to achieve 
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Figure 4. Intensity sensor ladder array formed from optical 
fibre ring structures. 

identical optical power from each sensor at the output 
bus head. The coupling constants of adjacent couplers 
are then related by 

1 k¡ 
kj+l=(l-y) 1-ki" (11) 

Considering k N= 1 and after sorne algebra as in refer
ences 4 and 5, the optimum coupling value of the jth
coupler, when coupler losses (y*O) and N sensors are 
considered, is 

(1-yt-¡ 
¡, V¡· (¡=)' 1- (1-yt-j+1 ( 12) 

and, for the lossless case (y= O), 

1 
k¡ N-j+ 1 Vj. (13) 

From these values, the optical power at the output 
bus due to the first recirculation of each ring, norma
lized to the input pulse 1;, can be found to be 

loss case: 

1 ·(y(1-y)N-1)2 2 
1,=(1-y) 

1
-(1-y)N /(1-k)X, ( 14 a) 

lossless case: 

(/=l.y=O): ( 14 b) 

These expressions are calculated considering the first 
sensor. However, because ofthe tailoring given by (12) 
and (13), the optical power of each pulse at the output 
bus is identical for any of the sensors in the network. 
The returned optical power normalized to 1; for the 
reference pulse is calculated in the same way, being 
now 

loss case: 

(
y(l-yt-1)2 

I;=(l-y)
3 

l-(1-y)v k=!:,k, (15 a) 

lossless case: 

k 
I r 
s= N2 · (15 b) 

Maintaining the same ladder network, identical 
values for k¡, k2 , • •• and kN-I could be obtained by 
changing the ring structures to Mach-Zehnder struc
tures. Therefore, when these structures are inserted in 
the arra y, the relation for the second transmitted 
optical pulse of the structures at the output bus are the 
same as for the ring structures ((14 a) and (14 b)), but 
now with k' and [1 replaced by k and l, respectively. In 
the same way, the returned optical power from the 
reference pulse is given by ( 15 a) and ( 15 b), with k 
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Figure 5. (a) Total optical power returned at the output bus dueto the second pulse produced in the structures and normalized to 
the input optical power (NI!) versus number of sensors (N). Loss case[--] corresponds to values of (1- y) equal to - 0·25 dB and 1 
equal to -0·5 dB, and lossless case is plotted as continuous line [-]. Structures considered on the array are rings (1) and 
Mach-Zehnders (2); (b) relative error, RE(%), versus the coupling constant of the rings, k, for e= 2 and 3, and for fJ =O[-] and 
-3 [--] dB. The fixed time delay between sensors is T=cr:. 

replaced by k' and multiplying the loss case equation by 
(1- y)l1• In the following analysis, alllosses per branch, 
l and /¡, will be considered identical. 

The total returned optical powers corresponding to 
the first recirculating pulse in the ring and the informa
tin pulse in the Mach-Zehnder structure are expressed 
as functions of the number of sensors N multiplied by 
the power returned from the information pulse pro
duced in each sensor N X 1 ~. In figure 5(a) these func
tions are represented versus the number of sensors, for 
both the Iossless case (ideal case) and loss case (non
ideal case). Curves obtained in this last case have been 
calculated for (1-y)=-0·25dB and /=-0·5dB. 
Coupling constant of the couplers are considered to be 
k= 0·05 and, from (10), Mach-Zehnders coupling con
stants are k'= 0·2429. In that way, the dynamic range 
for both ring and Mach-Zehnder structures can be 
compared and their values are 11·52 and 9·40 dB, 
respectively, its being observed that DRccR> DR~v~z¡, as 
discussed above. lt is inferred from these curves that 
ring ladder arrays are able to integrate a larger number 
of sensors when compared with Mach-Zehnder ladder 
arrays, when identical total returned optical power is 
assumed. Now, the value of kmin• calculated in (6), has 
to be modified to kmin = (U+ M)/ s, where s has be en 
defined in (15 a) for the loss case, and kmin = (U+ M)N 2 

for the lossless case. Consequently, the value of the 
maximum externa! loss detectable is also decreased in 
the same proportion. 

Once the values of the coupling constants are fixed, 
time de la y T is determined by ensuring a low crosstalk 
between pulses and, simultaneously, by maintaining a 
not-too-high repetition input pulse period. Taking this 
fact into account, the total delay produced on the array 
for the jth-sensor is equal to (j- 1 )er, where T is the 
delay of the ring and e is an integer number greater 
than or egua! to 2. For an N sensor arra y, like the one 
shown in figure 4, the repetition pulse rate of the source 
is 1/cNr. Hence, the duty cycle is 1/e, assuming that the 
first recirculating pulse is the only carrier of the sensor 
information. From this value for T, the information 
pulse of the jth-sensor only interferes significantly with 
the (e+ 2)th-pulse of the (j- 1 )th-sensor. As a matter 
of fact, those pulses might also interfere with the 
(e+ 2m )th-pulses of the (j- m )th-sensor, for an integer 
number of m~ 2. But values of 'lo considered he re are 
much larger than unity and, hence, the contribution of 
the interference pulses coming from non-adjacent sen
sors can be neglected. This means that interference 
pulses generated from the array associated with the 
information and reference pulses can be determined 
from the adjacent sensor. However, a possible problem 
emerges when the crosstalk function has to be defined 
from two different pulses. Since information and refer
ence pulses represent the final normalized information 
amplitude and both pulses are associated with interfer
ence pulses at the output bus, lJ is redefined as a 
function of A 2 plus the interference produced by the 



(e+ 2)th-pulse amplitude (A.+I) divided by A 1 plus the 
interference produced by the (e+ 1 )th-pulse amplitude 
(Ac+ 1). In this case, we have considered that the most 
important information about the effect of such interfer
ence ( or crosstalk) has to be obtained from the norma
lized signa!, measured at the output of the division 
circuit. Thus, the relative shift generated when interfer
ence pulses are considered associated with both such 
information and reference pulses can be calculated 
from the ideal case. The relative error RE produced 
from these added interference pulses associated with 
the respective amplitudes A 1 and A 2 to the ideal param
eter A 2/A 1 , is given by 

RE(%)= 

X 100, 

Az 

A¡ 
>< 100 

(16) 

where xj and xj-1 are the externallosses applied to the 
jth-sensor and the (j -1)th-sensor, respectively. In 
arder to simplify the analysis of the relative error, we 
have considered that no externallosses are applied and, 
hence Xj=Xj-l =l. In figure 5(b), the relative error 
versus the coupling constant of the rings is shown for 
e= 2 and 3 and for f3 = 0(-) and - 3(--) dB. When e= 2 
and no intrinsic losses are assumed, the reference pulse 
and the second recirculating pulse amplitudes for a 
value of k approaching zero are very clase and, conse
quently, the error function obtained is unacceptably 
high. However, the amplitudes of the reference pulse 
and the third and successive recirculating pulses (for 
e~3) diverge when k approaches zero. Hence, the 
error also approaches zero. As can also be obtained 
from the graph in figure 5( b), the intrinsic loss reduces 
substantially the relative error produced. 

As an alternative to the ladder topology studied, 
intensity sensors could be integrated in a recursive 
lattice array or directly in the steps of the same non
recursive ladder arra y. Both arrays ha ve be en analysed 
in references 4 and 5, and it is shown that there is only 
one reference pulse per input optical pulse, resulting in 
the fact that if any loss is produced in the arra y, not all 
sensing information is correctly demodulated. 
Furthermore, loss in the buses or in the recursive lattice 
topologies increases drastically the network crosstalk. 
Hence, the number of sensors that can be deployed in 
these arrays is fairly limited. 

4. Verification of the time domain behaviour 

In arder to check the feasibility of the calculations, we 
have implemented a non-recursive ladder array of two 
intensity ring sensors (N= 2). The intensity time do
main responses have been visualized on a digital oscil
loscope via an optoelectronic converter with a sensiti
vity of 1 V m w- 1

• In this experiment, we ha ve 
employed singlemode optical fibre, tunable directional 
couplers and a pulsed optical LD optical source stabi
lized at 1300 nm. The signals at the output of each ring 
are shown in figures 6( a) and 6( b), and the total 
detected signa! is shown in figure 6( e). W e ha ve 
employed ring lengths of 8 m, being the ring coupling 
constants 0·061 and 0·062 for the first and the second 
ring, respectively, and f3 (X= 1) =- 4·77 dB. The fixed 
time delay between sensors was 16m (e=2). The 
coupling constants of the bus couplers were nominally 
0·5. The mínimum effect of the second recirculating 
pulse amplitude is observed for the values of the cou
pling constants given above, and for the large intrinsic 
excess loss admitted (- 4.77 dB). As can be seen, the 
value of the dynamic range was not maximized for the 
optimum val u e of k. However, an almost inappreciable 
error function was obtained even for that value of k. 
This optimum value has to be higher when compared 
with the case of a single ring in the array. Therefore, 
the value of the measured dynamic range of the first 
ring at the output of the bus head (3·95 dB) is lower 
than that measured at the output of the ring (5·65 dB). 
This means that the optimum coupling constants of the 
rings are dependent on the array arrangement, as well 
as on the mínimum threshold detection leve] of the 
photodetector. In that way, the dynamic range suitable 
for each sensor ring is achieved. 

5. Condusion 

A time division multiplexing array of identical intensity 
sensing structures has been reported and analysed. 
Concerning the above mentioned system, two new 
improvements can be obtained from the information 
pulse amplitude, A 2, normalized to the reference pulse 
amplitude, A 1• First, any fluctuations in the optical 
power injected into the ring are cancelled from the 
information signa! after such normalization. Secondly, 
the dynamic range is substantially increased. This is is 
an important advantage if a large number of sensors is 
to be deployed in the arra y. 

The number of sensors does not essentially affect the 
crosstalk leve!. A relatively large dynamic range is 
easily obtained when physical parameters are directly 
proportional to the externallosses applied to the loops. 
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Figure 6. Time domain intensity responses of a two-sensors ladder arra y for T = 2-r:, detected: (a) at the first sensor output; (b) at 
the second sensor output; (e) at the output bus head. 

A large number of sensors can be integrated for a low 
detection threshold of the photodetector and an accep
table crosstalk level is achieved for a value of e larger or 
equal to three, independently of both the couplers and 
fibre losses of the buses. The intrinsic excess loss of the 
rings reduces drastically the error function of the nor
malized signal. No crosstalk is present when 
Mach-Zehnder structures are integrated in the array. 
This fact is due to their non-recursive nature. However, 
the price to pay is a lower dynamic range and a lower 
level of total optical power. This means that, for the 
same power levels, the number of sensors is decreased. 
Furthermore, ring structures are easier to implement 
and they only require one coupler per structure. 
Experimental results confirm the feasibility of the 
reported sensing network. 
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